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Abstract

This three part paper focuses on the effect of fiber architecture (i.e., shape

and distribution) on the elastic and inelastic response of metal matrix compos-
ites. The first part provides an annotative survey of the literature, presented as
a historical perspective, dealing with the effects of fiber shape and distribution on

the response of advanced polymeric matrix and metal matrix composites. Previ-
ous investigations dealing with both continuously and discontinuously reinforced

composites are included. A summary of the state-of-the-art will assist in defining
new directions in this quickly reviving area of research. The second part outlines a

recently developed analytical micromechanics model that is particularly well suited

for studying the influence of these effects on the response of metal matrix compos-
ites. This micromechanics model, referred to as the generalized method of cells

(GMC), is capable of predicting the overall, inelastic behavior of unidirectional,
multi-phased composites given the properties of the constituents. In particular, the
model is sufficiently general to predict the response of unidirectional composites re-

inforced by either continuous or discontinuous fibers with different inclusion shapes
and spatial arrangements in the presence of either perfect or imperfect interfaces

• and/or interfacial layers. Recent developments regarding this promising model, as
well as directions for future enhancements of the model's predictive capability, are
included.

Finally, the third part provides qualitative results generated using GMC for a
representative titanium matrix composite system, SCS-6/TIMETAL 21S. Results



are presented that correctly demonstrate the relative effects of fiber arrangement
and shape on the longitudinal and transverse stress-strain and creep response, with
both strong and weak fiber/matrix interfacial bonds. The fiber arrangements in-
elude square, square diagonal, hexagonal and rectangular periodic arrays, as well
as a random array. The fiber shapes include circular, square and cross-shaped
cross sections. The effect of fiber volume fraction on the observed stress-strain

response is also discussed, as is the thus-far poorly documented strain rate sensi-

tivity effect. In addition to the well documented features of architecture dependent
response of continuously reinforced two-phase MMCs, new results involving con-
tinuous multi-phase internal architectures are presented. Specifically, stress-strain
and creep response of composites with different size fibers having different internal
arrangements and bond strengths are investigated with the aim of determining the
feasibility of using this approach to enhance the transverse toughness and creep
resistance of TMCs.
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1 INTRODUCTION

Developments over the past several years in the processing of advanced unidirectional
• metal matrix composites have provided new and exciting opportunities for tailoring the

microstructure of these composites towards specific applications. Such tailoring may
involve arranging the fibers into specific periodic arrays or distributions, and using fibers
of more than one size, type, or shape. These new advancements in the processing and
fabrication technologies (e.g. plasma spray and foil-groove techniques, etc.) now make
it possible to truly engineer composite materials, propelling the composites community
into a new era of materials development, analysis, and design. Examples of engineered
materials include the concept of functionally graded materials, multi-phase composites
with different types of reinforcement phases, and unidirectional metal matrix composites
with engineered interfaces.

The emerging capabilities to engineer composite materials require the development of
computationally efficient micromechanics approaches capable of predicting with sufficient
accuracy the effect of microstructural details on the internal and macroscopic behavior of
these materials. The computational efficiency is an indispensable requirement due to the
large number of parameters that must be varied in the course of engineering a composite
material. It is probably inevitable that the optimization of a material's microstructure
will require the marriage of micromechanics models with optimization algorithms. From
this perspective, analytical approaches that produce closed-form expressions which de-
scribe the effect of a material's internal architecture on the overall material behavior are

preferable to numerical methods such as the finite-element or finite-difference schemes.
In this paper, a recently developed micromechanics analysis code (named MAC, see

Wilt and Arnold, 1994) is employed to investigate the impact of continuous fiber archi-
tecture on the overall composite behavior under a variety of mechanical load histories.
MAC's predictive capability rests entirely upon the fully analytical rnicromechanics
model, herein referred to as the generalized method of cells, GMC, (Paley and Aboudi,
1992; Aboudi and Pindera, 1992, Aboudi, 1994) which is capable of predicting the re-
sponse of both continuous and discontinuous multi-phased composites with an arbitrary
internal rnicrostructure and reinforcement shape. GMC provides closed-form expres-
sions for the macroscopic composite response in terms of the properties, size, shape,
distribution, and response of the individual constituents or phases that make up the ma-
terial. Details of GMC will be briefly outlined for completeness. Expressions relating
the internal stress and strain fields in the individual constituents in terms of the macro-

scopically applied stresses and strains are also available through so-called strain or stress
concentration factors. These expressions make possible the investigation of failure pro-
cesses at the microscopic level at each step of an applied loading history, thus shedding

• light on how local damage affects the overall behavior, including macroscopic (ultimate)
failure. Furthermore, GMC includes the capability to study the effect of debonding at
the fiber/matrix interface which has been shown to be an important damage mechanism
limiting the usefulness of silicon carbide/titanium (SiC/Ti) composites under transverse
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and shear dominated loading (Karlak et al., 1974; Johnson et al., 1990; Nimmer et al.,
1991a,b; Majumdar and Newaz, 1992; Lissenden et al. 1994).

In order to illustrate the need for a micromechanics-based model with the capabilities

of GMC, a survey of literature dealing with the micromechanics modeling of the effects
of fiber architecture, i.e. fiber shape and internal arrangement, on the overall composite
response is first provided. This survey reveals that considerable work has been done
during the early stage of composite material development in the 1960's and 1970's ad-
dressing the effects of fiber distribution, and to some extent fiber shape, on the internal
stress and deformation fields, as well as the macroscopic elastic and inelastic behavior.
It is important to note that the early modeling work, addressing the influence of fiber
distribution on the macroscopic response, was carried out primarily in the context of
attempting to identify the internal arrangements of circular cross-section fibers which
yielded results that best fit the experimental data. These various investigations were
partially motivated by the rapid development of small-diameter fiber composites such as
glass/epoxy and graphite/epoxy wherein, the precise control of fiber distribution at the
microscopic level is difficult, and only statistically macroscopic arrangements are possi-
ble. Similarly, in the case of early large-diameter fiber composites, such as boron/epoxy

(S/Ep) and boron/aluminum (B/A1), the lack of technologies capable of precisely con-
trolling fiber distributions was also a contributing factor. Notable exceptions include,
the fundamental work of Drucker (1965) in which general principles were outlined that
govern the strengthening of the elastoplastic response of particulate metal matrix com-
posites through inclusion size, shape and distribution, and the modeling work of Foye
(1966a,b), and Adams and Donner (1967a,b), aimed at investigating the effectiveness
of fiber shape, as well as fiber arrangement, in strengthening the matrix. The results
of these investigations were subsequently employed by Halpin and Tsai (1967) (see also
Ashton, et al. (1969)) in developing design-oriented equations for predicting the elastic
moduli of unidirectional composites with different fiber shapes and arrangements.

Recent investigations are characterized by more systematic studies of the effects of
fiber geometry and distribution on the response of metal matrix composites, with the
primary emphasis placed on the inelastic behavior. Due to the lack of tractable analyt-
ical approaches, the finite-element method typically has been employed by the various
researchers. The results of such systematic computations make possible identification
of rules governing the macroscopic behavior of metal matrix composites with different
microstructures. These rules, in turn, can be useful both in explaining experimentally
observed behavior and in designing composite materials with different microstructures.
It is becoming increasingly clear, however, that more efficient approaches than the finite-
element method are needed in developing a comprehensive set of guidelines for the design
of a composite material's architecture. As mentioned previously, this is due to the large
number of parameters that must be perturbed in identifying an optimal internal ar-
chitecture. These parameters include material properties of the constituents since it is
conceivable that an optimal fiber architecture for an elastoplastic matrix may no longer
be optimal for a viscoplastic matrix where creep is dominant. The fact that MAC/GMC
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isan accurateand ei_cientalternativetoolforoptimizingthemicrostructureofmulti-

phasemetalmatrixcompositeshasbeenclearlydemonstratedrecentlyby Wilt(1995);
wherein,a comparisonbetweenGMC andFEM unitcellanalysesindicatedthatforthe
same transversestress-strainresponseofa perfectlybdndedcomposite,GMC requires

significantly less CPU time, as illustrated in Fig. 1.

2 LITERATURE REVIEW

A variety of different micromechanical approaches have been employed in the past
thirty years to study the overall behavior of composites from the knowledge of the prop-
erties of their constituents, geometry of the reinforcing phases and their distributions. A
comprehensive and still relevant review of the different schemes for the elastic response
has been oftered by Chamis and Sendecky (1968), describing developments up to the
late 1960's; whereas an outline of the different approaches for the elastoplastic response,
including yielding, has been presented by Pindera (1983) which describes developments
up to the late 1970's. Although progress in micromechanics has been made since then,
the majority of work in micromechanical modeling of metal matrix composites is based
on well-established numerical methods such as finite-element or finite-difference schemes.

These numerical methods are currently employed to investigate specific problems in metal
matrix composites which cannot be easily treated by the analytical approach. Notable
exceptions include the development of the method of cells and its generalization (Aboudi,
1989, 1991; Paley and Aboudi, 1992; Aboudi and Pindera, 1992), the development of a
new theory for functionally graded composites (Aboudi et al., 1993; 1994a,b; 1995), and
the development of two analytical modeling schemes for periodic composites (Walker et
al., 1989, 1991; Nemat-Nasser and Iwakuma, 1982; Nemat,-Nasser and Hori, 1993). Men-
tion also ought to be made of the homogenization theory, despite its finite-element based

implementation, as it offers new perspectives for taking into account multi-directional
loading of composites in a rational manner.

Only the methods (and their corresponding results) that have been employed to ex-
plicitly investigate the effects of fiber architecture on the overall composite response will
be discussed herein. The references cited above will provide the reader with a more gen-
eral outline of the various micromechanics schemes currently available. Review of the

literature dealing with continuously reinforced composites is presented first, followed by
review of the literature dealing with short-fiber, particulate and whisker reinforcement.

2.1 Continuous Fiber Composites

Review of the approaches used to predict elastic moduli is presented first since the
results are also useful in understanding the initiation of yielding. The effectiveness of
the reinforcement phase in controlling the subsequent plastic response can also be in-
ferred from these models based on the knowledge of reported elastic stress fields. A



review of the elastic models also sheds light on the difficulty associated with the inelastic
micromechanical analysis and explains the prevalent use of numerical approaches.

2.1.1 Mieromechanical Modeling ofthe ElasticResponse

Importantresultsfortheboundsontheelasticmoduliofmulti-phasecompositeswith
an arbitraryphasegeometryhavebeenestablishedby Hashinand Shtrikrnan(1963)and
Hashin(1965)usingvariationalprinciplespreviouslyestablishedby theauthors.These
boundsarevalidforeithera statisticallyhomogeneousdistributionofarbitrarily-shaped
inclusionsthatproducemacroscopicaUyisotropicbehavior,or a statisticallyhomoge-
neousdistributionofalignedtransverselyisotropicfibersofan arbitrarycross-section

thatproducemacroscopicallytransverselyisotropicbehavior.Despitethefactthatthe
differencesbetweenthelowerandupperboundsmay besignificantdependingonthemis-
match intheelasticpropertiesofthephasesand thevolumefraction,theseboundsare
usefulinestablishingthelimitsofpossiblemaximizationoftheconstituents'potentialin

sofarasthepropertiesoftheconstituentphasesareconcerned.Thesebounds arealso
usefulinverifyingthepredictionsofmore detailedmicromechardcalapproachesbased
on specificgeometricmodelsofthe compositematerial'smicrostructurethatproduce
macroscopicallyisotropicortransverselyisotropicelasticmoduli.

One suchmodel isthecompositecylinderassemblage(CCA) model inwhich the
microstructureofa compositeismodelledby an infinitearrayofcompositecylindersof
varioussizeswhichcompletelyfillthevohuneoccupiedby thecompositematerialsuch

thatmacroscopicallyuniformbehaviorisobtained(Hashinand Rosen,1964;Hashin,

1972).Each compositecylinderconsistsofa fiberembedded ina surroundingmatrix
sheathsuchthatthesame fibervolumefractionforallcylindersismaintained.Under

axisymmetricandaxialshearloading,thebehavioroftheentireassemblageisthesame as
thebehaviorofa singlecompositecylinderwhichcaneasilybe analyzedusingstandard

analyticaltechniques.Unfortunately,onlyboundson thetransverseelasticmodulican
be obtained,limitingtheusefulnessofthemodel.Theseboundstendtobe farapartfor
intermediatefibervolumefractionsand largemismatchesintheconstituents'properties.

Nevertheless,takenliterallyasa geometricmodel,theresultscanbe comparedwiththe
resultsofperiodicarraymodelsthatwillbediscussedsubsequentlyinordertodetermine
theeffectofa macroscopicallyuniform,butotherwisearbitrary,distributionoffibersof
varyingsizeson theoverallelasticbehavior.

Variouselasticitysolutionsfordifferentperiodicdistributionsofinclusionsorfibers
havebeenobtainedby numerousinvestigatorsby analyzingtheresponseofa singlere-

peatingunitcell,ora basicbuildingblockofthearray,underappropriateboundary
and symmetryconditionsthatreflecttheappliedloading.Typically,thegoverningequa-
tionsofelasticityaresatisfiedexactlywhilethecontinuityconditionsbetweenindividual
phases,and theboundaryconditionson theunitcell,aresatisfiedapproximatelyusing

pointmatchingorleastsquarestechniques.Applicationofthistechniquetodetermine
theelasticmoduliandinternalstressdistributionshasbeencarriedoutbyPickett(1968),
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and Leissa and Clausen (1968), using a Fourier series representation of the Airy's stress
function in polar coordinates. Pickett considered regular distributions of circular fibers
arranged in hexagonal and rectangular arrays, while Leissa and Clausen discussed exten-
sion of the method to fibers with elliptical and polygonal cross-sections without providing
actual numerical results for the elastic moduli. Although no systematic comparison of the
effect of fiber distribution on the elastic moduli has been provided by Pickett, his results
nevertheless suggest that the transverse Young's moduli of a nearly square array of circu-
lar fibers are greater than those of a hexagonal array with the same fiber volume fraction
(60%). The axial Young's modulus, on the other hand, was not significantly affected by
the actual inplane fiber distribution and was suggested to be adequately predicted by the
rule-of-mixtures approximation.

The _:ite-difference technique has been employed by Adams and Donner (1967a,b)
to investigate the effects of material properties, fiber shape, spacing, volume fraction and
periodic arrangement on the elastic response under longitudinal shear and transverse
loading. Extensive results for the longitudinal shear moduli of unidirectional composites
with circular, elliptical and square fibers in square and rectangular arrays were presented
in graphical form. Also the effect of the considered parameters on the internal stress dis-
tributions was discussed with regard to localized yielding and failure. The dependence
of the longitudinal shear modulus on the fiber shape for a rectangular array with equal
fiber spacing in two principal directions was displayed graphically. Significant differences
in the longitudinal shear modulus are observed at small fi!ament spacings (i.e., large fiber
volume fractions) for the considered fiber cross-sections for a B/Ep composite with a large
shear modulus mismatch between fiber and matrix. However, these differences diminish
as the fiber spacing increases (i.e., the fiber volume fraction decreases), and actually ap-
proaches at large fiber spacings the same limit, where little strengthening is observed. A
square fiber cross-section produces the largest value of the longitudinal shear modulus,
followed by an elliptical cross-section with the major axis in the plane of shear loading,
followed by a circular cross-section, and finally by an elliptical cross-section with the
major axis perpendicular to the loading plane. The maximum stress concentrations in
the matrix follow the same trends, implying that localized failure may potentially negate
the high strengthening effect of the inclusion at high concentrations unless relief through
localized plastic flow is possible. Since the high stress concentrations are highly local-
ized, effective strengthening of ductile elastoplastic matrices can be achieved using high
concentrations of differently shaped fibers. The effect of periodic fiber arrangement on
the longitudinal shear modulus of unidirectional composites with circular fibers was also
presented for a wide range of fiber/matrix shear moduli ratios, showing that the square
array produces a higher value than the hexagonal array, with the difference increasing
substantially above fiber concentrations of 55 percent. An important result based on the
comparison of the stress concentration factors in the matrix obtained from the periodic
solution for a square and a rectangular array is that the nearby surrounding fibers tend
to distribute the stresses more uniformly as the fiber spacing becomes more uniform in
all directions, thus reducing the peak stresses.
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The numerical results presented by Adams and Donner for the elastic response under
transverse loading are not as extensive as those presented for the longitudinal shear
problem. No information on the effect of fiber shape or periodic arrangement on the
transverse elastic moduli is presented. Only limited results for the maximum normal
stress in an equally spaced array of elliptical and circular fibers subjected to a uniform
temperature change are given. These indicate that for a given fiber volume fraction, the
elliptical fiber produces higher maximum normal stresses at the fiber/matrix interface
on the major axis than the square fiber, with the difference increasing with increasing
aspect ratio of the ellipse.

Foye (1966a,b) used the £mite-element technique to determine the elastic moduli of
square, rectangular, diamond and hexagonal periodic arrays of fibers having various cross-
sections. This is perhaps the £1rstattempt to systematically study the effect of the fiber
architecture on the elastic response of composites. The square array of circular fibers
was shown to exhibit higher transverse Young's modulus than the hexagonal array, with
the difference being small at low fiber concentrations and increasing substantially with
increasing concentration for composites with large fiber/matrix modulus mismatch. The
square array was much more conducive to high stress concentrations than the hexago-
nal array. The longitudinal shear modulus exhibited qualitatively similar trends, with
substantially smaller differences between the square and hexagonal array values observed
throughout the entire fiber volume fraction range, however. Comparison with the pre-
dictions of the CCA model revealed that the longitudinal shear modulus and the upper
bound for the transverse Young's modulus were very close to the predictions of the
hexagonal array. The transverse Young's modulus and the longitudinal shear modulus of
elliptical and diamond shaped fibers with an aspect ratio of 4, calculated at a single value
of the fiber volume fraction (0.3), were higher than the corresponding values for the cir-
cular fiber under loading parallel to the long dimension. The diamond fiber produced the
highest moduli values and lowest stress concentrations. The influence of the aspect ratio
of rectangular fibers on the transverse Young's modulus and longitudinal shear modu-
lus was shown to be significant, with the cross-sections having the longer dimension in
the plane of normal tension or sheafing producing substantially higher values than the
square geometry for a diamond array. Significantly smaller differences were obtained for
the longitudinal shear modulus when the plane of shearing was aligned with the shorter
dimension.

The results of Adams and Donner, and Foye, have been summarized by Ashton, et
al. (1969), and compared with the design-oriented semi-empirical, semi-analytical mi-
cromechanics equations proposed by Halpin and Tsai (1967). The Halpin-Tsai equations
use the rules-of-mixtures approximation for the longitudinal Young's modulus and Pois-
son's ratio irrespective of the fiber shape and distribution, which is partially justified
based on the results of Pickett, and a common functional form for the remaining moduli.
This common equation has been deduced from Hermans' (1967) generalization of the
self-consistent model results and involves the fiber/matrix property ratio, fiber volume
fraction and a geometric parameter that depends on the geometry of the inclusion, pack-



ing geometry and loading conditions. This geometric parameter must be determined from
an appropriate solution to a given micromechanics problem. Comparison of the Halpin-
Tsai predictions with selected results of Adams and Donner, and Foye, demonstrated the
usefulness of the equations for design purposes.

In an attempt to explain the discrepancy between the transverse Young's modu-
lus measured experimentally and predicted using micromechanics analysis based on the
hexagonal fiber distribution, Adams and Tsai (1969) performed a finite-element analysis
of square and hexagonal fiber arrays with quasi-random distributions. The square array
has been included since it had been shown in previous investigations to correlate better
with experimental data than the hexagonal array, contrary to intuition. Significantly
better correlation was subsequently obtained between experimental data and the hexag-
onal random array,while introducing randomness into the square array resulted in poorer
correlation.

2.1.2 Micromechanical Modeling of the Elastoplastic Response

Studies of initial yield surfaces using finite-element analysis were carried out by Lin
et el. (1972a) for B/A1 composites subjected to combined plane loading of longitudinal
and transverse normal stresses, and inplane longitudinal shear stress. Yield surfaces for

square-array geometries generated in the principal stress plane appeared to be convex and
symmetric through the origin. It was observed that application of increasingly greater
shear stresses caused the surfaces to shrink continuously. The above analyses were subse-

quently extended by the authors to the problem of longitudinal loading of unidirectional
square-array B/A1 and B/Ep laminae with the goal of determining the stress-strain re-
sponse and progression of the elastic-plastic boundary (Linet al., 1972b). The results
indicated that initiation of yielding took place at opposite corners of the fiber/matrix
interface closest to adjacent fibers and the plastic zone expanded very fast with increas-
ing applied tractions. It was noted that the elastic limit macrostresses appeared to vary
inversely with the matrix stiffness, while the ultimate tensile strength, as determined by
local failure of either phase, depended on the elastic limits, Young's moduii, Poisson's
ratios, and ductility of the materials.

Similar but more extensive studies were carried out by Dvorak et al. (1973, 1974) for

unidirectional composites with hexagonal geometries subjected to arbitrary combinations
of applied macroscopic stresses and temperature changes. In general the significant con-
clusions of these studies were that, yielding starts at the fiber/matrix interface for high
fiber volume fractions; the plastic zone expands very fast with increasing macrostress,
yield surfaces are convex; temperature changes can cause significant yielding and trans-
lation of the yield surface; composites yield under hydrostatic stress and exhibit volume

• changes; and yielding in the fiber direction is controlled by the fiber/matrix moduli ratio
as well as the fiber volume fraction. High ratios inhibit yielding in the longitudinal di-
rection, whereas yielding in the transverse plane is controlled by the matrix yield stress.
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Also, high longitudinal and transverse shear stresses facilitate yielding under combined
loads.

The presentation of the yield surfaces calculated by Lin and Dvorak for the square
and hexagonal arrays does not lend itself to direct comparison in order to study the effect
of the two fiber array geometries on initial yielding. Karlak and Crossman (1976), on
the other hand, used the finite-element approach to study the effect of the fiber array

geometry and fiber volume fraction on initial yielding in unidirectional B/A1 composite
under combined loading of the kind generated in an off-axis tension test. Square, square
diagonal (diamond) and hexagonal arrays of circular fibers were analyzed under pure
longitudinal and transverse loading, as well as combined loading involving longitudinal,
transverse and inplane shear stresses varying according to the transformation equations
with the fiber off-axis angle. Elastic moduli also were calculated for the different arrays
and three fiber volume fractions ranging from 0.4 to 0.6. The results indicate that

the longitudinal Young's and shear moduli, as well as the longitudinal yield strength
were independent of the packing morphology. The transverse modulus and Poisson's
ratios, on the other hand, were array morphology dependent, with the values for the
hexagonal case approximately intermediate to the two square arrays. The transverse
yield strength appeared to depend somewhat on the packing morphology, with slight
differences between the square and hexagonal arrays, and somewhat greater observed
differences between square and square diagonal arrays. For the fiber volume fraction
of 0.4 and 0.5, the transverse yield strength of the square array was somewhat lower
than that of the square diagonal array, whereas for the fiber volume fraction of 0.6 the
reverse was true. Failure of the lamina through debonding when the interracial normal

stress at the fiber/matrix interface reached a certain percentage of the transverse yield
strength was also investigated and found to be slightly dependent on the fiber array
geometry. This was explained by noting the slight dependence of the lamina transverse
yield strength on the fiber packing geometry.

Adams (1970) studied the inelastic response of B/A1 and B/Ep composites under
transverse loading, as a function of the fiber volume fraction and fiber arrangement.
Square and rectangular arrays were considered and the results compared with exper-
imental data. Progression of yielded zones was reported as a function of the applied
transverse load, and nonlinear stress-strain curves were generated up to the initiation
of local failure in either of the constituents. Significant differences were noted for the
considered geometries. The rectangular array subjected to transverse tension in the di-
rection of closer fiber spacing produced stiffer response and earlier initial failures than
the corresponding square array due to the higher stress concentrations between closely-
spaced adjacent fibers. Consequently, yielding was localized in the rectangular array, and
thus the progression of yield zones more constrained relative to the square array which
exhibited widespread yielding, producing significantly less ductile behavior prior to the
initiation of first failure. Agreement with experimental data was found to be reasonable
for the rectangular array but poor for the square one because the rectangular array more

10



closely resembled the actual fiber architecture. The effect of increasing the fiber volume
fraction was to dramatically decrease the strain-hardening behavior.

Foye (1973) used the finite-element analysis based on the square-array geometry to
study the transmission of constituent nonlinearities to the macroscopic behavior. The
relevant observation from the viewpoint of the present survey is the small influence of
the free-surface effect on the inelastic deformation. This observation was the result of

comparing the response of a single row of fibers embedded in a strip of matrix with the
corresponding results from the analysis of many such plies subjected to transverse normal
loading. This single row of fibers produced a softer elastic response (as predicted by
Hulbert and Rybicki (1971) in an earlier paper) than the configuration with many plies,
which was not substantially magnified in the elastoplastic region. The stiffer response
of the multi-ply configuration is due to the greater constraint of the adjacent fibers in
the interior of the domain, which produces a higher triaxial state of internal stress. The
stiffness decrease under longitudinal normal loading in a single ply was found to be
considerably less than that in the multi-ply configuration; whereas under longitudinal
shear loading the stiffness decrease was nonexistent. Note that yielding initiated at a
point in the matrix midway between two adjacent fibers under transverse normal loading;
whereas under longitudinal shear loading flow appeared to initiate at the fiber/matrix
interface along the line of closest approach of adjacent fibers.

In a somewhat related investigation, Bigelow (1992) studied the effects of uneven
fiber spacings in the surface plies and the interior, along with the fiber volume fraction,
on the internal stress fields produced during fabrication cool-down of a SiC/Ti unidi-
rectional composite. This was motivated by the experimental results of MacKay (1990)
who reported radial mierocracking in SiC/Ti unidirectional composites after processing.
Substantially more microcracks were observed between closely spaced fibers than those
with more uniform spacing. Surface plies exhibited more radial microcracking than in the
interior. Not surprisingly, Bigelow found that the stress concentrations increased with
decreasing fiber spacing, leading potentially to either radial microcracking or interfacial
debonding in the case of touching fibers. Similar results were obtained for uneven fiber
spacing in the surface plies, with somewhat greater values of peak stresses.

The effect of fiber array geometry on cracking susceptibility of ceramic matrix com-
posites due to thermal expansion misfit was also investigated by Lu et al. (1991). The
stress intensity factor for a radial crack emanating from a flber/matrix interface was
calculated as a function of the crack length for cubic and hexagonal arrays, as well as
two fibers in an infinite matrix. The hexagonal fiber array was less susceptible to radial
cracking than the cubic array. The greatest susceptibility to radial cracking was exhib-
ited by two fibers in an infinite matrix_ showing the deleterious effect of localized uneven
fiber distributions in periodic arrays.

• Wisnom (1990) investigated the effect of fiber array geometry on the inelastic re-
sponse and failure of silicon carbide/ahuninum (SiC/A1) unidirectional composites under
transverse tension in the presence of a finite-strength interface and residual stresses.
Rectangular and diamond arrays of circular cross-section fibers were investigated. Addi-
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tionally, a ply composed of a single row of fibers was considered in order to compare the
response of the surface ply with that of the interior plies. It was found that neither fiber
array geometry nor fiber spacing, for the investigated geometries, aiTectedthe transverse
strength when the primary mode of failure was interracial failure, since the inability of
the matrix to carry access load immediately resulted in total composite failure. In this
scenario, the residual stresses play an important role delaying the average applied trans-
verse stress which initiates localized debond failure. The reported data on the elastic
moduli for the different fiber arrays indicated that the diamond fiber array produced the
lowest value of the transverse Young's modulus, followed by the rectangular array with
the long dimension parallel to the loading direction, and finally the rectangular array
with the short dimension parallel to the loading direction. This result, of course, was
consistent with the data reported long ago by Foye and others.

When interracial debonding does not lead immediately to macroscopic failure of the
composite, a substantially different conclusion is reached regarding the effect of the fiber
array geometry. Nimmer et al. (1991a,b) investigated the response of a unidirectional
SiC/Ti composite subjected to transverse loading using the _.ite-element approach based
on a unit cell with three different aspect ratios, defined in terms of the unit cell dimensions
in the plane of loading. A weak fiber/matrix interface was assumed that allowed debond-
ing to occur when the fabrication-induced residual radial stress (which was compressive)
was overcome by the externally applied transverse load. The initial elastic response of
the three fiber arrays followed the trends established by earlier investigators. The rect-
angular array with the short unit cell dimension in the loading direction exhibited the
stiffest response, followedby the nearly square array, and finally by the rectangular array
with the long unit cell dimension parallel to the load direction. The small differences in
the initial elastic response were substantially magnified when the interface was allowed
to open up because of significant transfer of stress from the fiber to the matrix region in
the plane perpendicular to the applied load. Since the fiber array with the long dimen-
sion along the loading axis possessed closely spaced fibers in the plane perpendicular to
the load, the matrix in that plane supported a higher stress when debonding occurred
than did the configuration with the short dimension along the loading axis. This stress
magnification in the matrix phase between adjacent fibers in the plane perpendicular to
the load direction, which is a function of the aspect ratio of the unit cell in the plane
of loading, produced significant differences in the response of the different arrays when
debonding occurred.

More systematic studies on the eiTectsof fiber geometry and architecture have recently
been providedby Brockenbrough et al. (1990, 1991) for a B/AL unidirectionalcompos-
ite under longitudinal and transverse tensile and shear loading. Elastic and inelastic
response of square, hexagonal and circular fibers in square, square diagonal (a square
array rotated by 45 degrees) and triangular (hexagonal array with equal fiber spacing)
arrays was analyzed in the presence of a perfect bond using the finite-element approach.
A random array of square and circular fibers was also included in the analysis based on
a unit cell containing 26 and 30 fibers, respectively. No differences between the different
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fiber arrays with different fiber shapes were observed for longitudinal loading; whereas
substantial differences were observed for transverse tensile and shear loading. The sig-

nificant conclusion (for transverse loading) was that fiber shape and fiber arrangement
influence the inelastic response to a markedly greater extent than the elastic moduli. For
instance, while a maximum variation of 17 percent in the elastic transverse Young's mod-
ulus was observed for the three different fiber arrangements with square, hexagonal and

circular fibers, the variation in the inelastic response was substantially more dramatic,
given a composite with a fiber volume fraction of 0.46. The extent of the variation in
the inelastic region was shown to be a function of the fiber volume fraction, with smaller
clifferences observed for low fiber volume fractions. The effect of the fiber array was much

more pronounced than the effect of the fiber shape. For a given fiber shape (square or
circular), the square array exhibited the stiffest elastic response and the greatest extent
of strain hardening, followed by the random, triangular, and square diagonal arrays. The
hexagonally shaped fiber in a triangular array produced an intermediate value of the
elastic modulus and strain hardening. For a given fiber array, the square fiber produced
a stiffer response in both the elastic and inelastic regimes than the circular fiber. The
above results are directly related to the extent of stress triaxiality that develops in the
different arrays with different fiber shapes. For instance, a square fiber in a square array
produced a higher state of hydrostatic tension in the matrix, where plastic slip can occur,
than a circular fiber in a square array (for the same applied average transverse stress).
A hexagonal fiber in a triangular array produces a hydrostatic state of stress that lies
between these two extremes.

The work by Brockenbrough et al. was extended by Nakamura and Suresh (1993)
by including the effect of fabrication-induced residual stress on the response of unidirec-
tional B/A1 with circular fibers in square, square diagonal, hexagonal and random arrays.
Residual stresses were sufficiently high to yield the matrix during simulated fabrication
cool down, resulting in a slight reduction of the initial axial response in tension. The
differences in the axial response of the various arrays were not significant, however. Thus
residual stresses increased the composites resistance to plastic flow under transverse ten-
sion and reduced the strain hardening exponents of the considered fiber arrays; wherein
the differences between strain hardening exponents for the different packing arrangements
became significantly less pronounced given the presence of a residual stress field.

Kolle and Mueller (1991), and Mueller (1994) also investigated the response of unidi-
rectional B/A1 composite using the finite-element approach based on unit cells composed
of a square fiber in a square array, and a circular fiber in square and hexagonal arrays.
Results for all the thermo-elastic constants were presented for the different arrays at a low
and a high fiber volume fraction. Little difference in the longitudinal Young's modulus,
shear modulus, Poisson's ratio, and thermal expansion coefficients was seen between the
different arrays, whereas, the differences in the transverse moduli were more substantial
and became more pronounced with increasing fiber volume fraction. The differences in
the elastoplastic response under transverse tension between the different arrays were also
substantially more pronounced at higher fiber volume fraction. As reported by previous
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investigators, the square array with a square fiber produced the stiffest response, fol-
lowed by the square array with a circular fiber, and finally by the hexagonal array with
a circular fiber.

The work o£ Bohm et al. (1993) based on the finite-element analysis of periodic arrays
confirms the results for unidirectionally reinforced metal matrix composites with square
and hexagonal array geometries reported by previous investigators, and also includes re-
sults on discontinuous fiber composites. A novel approach to generating finite-element
representations for different arrangements of fibers allows ei_cient investigations of clus-
tered arrays as well as perturbed periodic arrays. Of particular significance is the re-
distribution of microstresses in the perturbed arrays which may affect micro-level failure
mechanisms by changing the hydrostatic and deviatoric components of the stress fields
relative to those obtained for regularly spaced arrays.

2.1.3 Micromechanical Modeling of the Creep Response

Relatively little work has been done on the creep response of metal matrix composites
with different fiber arrays and fiber shapes in comparison to the extensive work on the
elastic and plastic tensile response. Crossman et al. (1974) were perhaps the first to study
the effect of fiber array geometry on the creep response of unidirectional B/A1 composites
using the finite-element approach. Debonding of the interface was also included in the
analysis. The work was conducted in order to develop equations for the steady-state creep
of unidirectional composites as a function of fiber shape and geometry along similar fines
as the Halpin-Tsai equations for the elastic moduli. The numerical results indicated that
the transverse steady-state creep rate of a metal matrix composite reinforced by elastic
fibers can be described in closed form by the same analytical creep relation used for the
steady-state creep rate of the matrix with appropriate modifications for the geometry of
the reinforcement and degree of debonding. These effects enter the steady-state creep
rate equation for the composite through a geometric parameter. For example, given fully
bonded composites with circular fibers, the transverse composite steady-state creep rate
at a given stress level was highest for the diamond (or square diagonal) array, intermediate
for the hexagonal, and the lowest for the square arrays. Alternatively, fully debonded
composites exhibited significantly greater creep, and exhibited only slightly more creep
resistance than material containing arrays of circular holes. Consequently, in the fully
debonded case, the difference in the steady-state creep rate between the square and
hexagonal arrays was significantly smaller than in the fully bonded case; the square
array being slightly less resistant to creep than the diamond array.

In a follow-up investigation, Crossman and Karlak (1976) extended the uniaxial load-
ing analysis to multi-axial loading. The primary conclusion was that for the considered
material system, the longitudinal creep response was independent of the fiber array geom-
etry (i.e., the transverse stresses created by the Poisson's ratio mismatch and geometric
constraint of the various arrays did not contribute significantly to the axial creep), which
led to the uncoupling of the longitudinal axial creep response from the longitudinal shear
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and transverse responses. The effect of the fiber array geometry on the longitudinal shear
creep response of fully bonded composites was found to be much less significant than un-
der transverse loading. Although coupling between longitudinal shear and transverse
loading was found to be substantial, and describable by simple interactive formulas, the
reported results under combined loading were presented only for a square fiber array.

2.1.4 Continuous Fiber Composites Literature Summary

The various investigations described in the foregoing sections indicate extensive use of
the numerical approach in studying the dependence of the effective composite response
on fiber architecture. While the influence of fiber arcbStecture on elastic moduli can

potentially be studied in an efficient manner using the collocation technique originally
employed by Pickett, as well as Clausen and Leissa, finite-difference and finite-element
techniques were extensively employed to calculate elastic moduli for various fiber shapes
and distributions as a function of the fiber volume fraction and the constituent prop-

erty mismatch. Both fiber shape and distribution were demonstrated to influence the
elastic moduli to varying degrees, depending on the direction of loading with respect to
the fiber axis, fiber content, and fiber/matrix property mismatch. For normal loading
parallel to the fiber direction, practically no dependence of the axial Young's modulus
and Poisson's ratio on fiber architecture has been reported. Since this type of loading
involves no direct stress transfer between the fiber and the matrix phases along the load-

ing direction, the differences in the stress field caused by fiber architecture and Poisson's
ratio mismatch in the plane perpendicular to the load (and fiber) axis are not sufficient
to substantially influence the axial response. A different story emerges in the presence
of direct stress transfer between the phases caused by transverse normal or shear, and
axial shear loading. In this case, the fiber architecture may have a substantial effect on
the associated elastic moduli, the extent of which depends on the fiber content and the
fiber/matrix property mismatch. Work on the effect of fiber architecture on the response
of discontinuous fiber composites reviewed in the following section aids in separating the
relative influence of the fiber shape and fiber distribution, as well as in understanding
the basic mechanisms associated with these variables. As will become apparent, the fiber

shape directly influences the transfer of stress from the matrix to the fiber, while the
fiber distribution plays a major role in controlling the extent of stress triaxiallty in the
matrix, thereby imposing a constraint on shearing deformation in the matrix. The effec-
tiveness of these mechanisms in enhancing the elastic moduli of the composite increases

with increasing fiber content and the fiber/matrix property mismatch.
When the matrix exhibits elastoplastic behavior, fiber architecture has a more sig-

nificant influence on the elastoplastic response of the composite compared to the initial
elastic behavior for transverse tensile and shear, as well as longitudinal shear, loading.

The longitudinal elastoplastic response, on the other hand, is not affected by the fiber
architecture as also observed in the elastic case. Since the fiber shape mainly controls

" local stress concentrations at the fiber/matrix interface, its effect on constraining plastic
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deformation in the matrix tends to be localized. Alternatively, the fiber arrangement

tends to provide constraint on plastic deformation throughout a substantially greater
portion of the matrix at sufficiently large fiber concentrations. For this reason, the fiber
arrangement appears to play a more important role in influencing elastoplastic response
of the composite than the fiber shape.

Fiber arrangement also plays a substantial role in influencing the steady-state creep
behavior of unidirectional composites. As in the case of the elastoplastic behavior, the
longitudinal steady-state creep response is not affected by the fiber distribution, while
under transverse loading substantial differences are observed between steady-state creep
of square, hexagonal and diamond arrays of circular fibers. No data on the effect of fiber
shape on the creep response appears to be presently available.

Tables I and II provide a summary (in chronological order) of those investigations
discussed in the foregoing which provide explicit data on the effect of fiber architecture
on the elastic, elastoplastic and creep response of continuously reinforced composites.
While this summary indicates that a considerable amount of work has been done in the
past to demonstrate and understand the effect of fiber architecture on the response of
unidirectional composites, it should also be pointed out that this work_ in general, has
not been systematic or exhaustive. The reason for this is the predominant use of time-
consuming finite-element analysis in modeling the response of composites with different
shapes and fiber distributions. Thus the previous investigations often have focused on
specific material systems, specific moduli or loading directions, limited ranges of fiber
volume fractions, or specific inelastic or damage mechanisms. Very few investigations
provide comprehensive data on the effect of both fiber shape and fiber distribution on the
effective elastic, thermal and inelastic composite response. When such data is presented,
it is typically restricted to one material system. Further, no data is available showing the
effect of fiber architecture on the effective response of multi-phase composites (i.e., those
with more than one type of fiber having different cross-sectional geometry and material
properties).

The foregoing discussion reveals an abundant research area with a great potential for
further investigation and exploitation. In particular, virtually no results are presently
available demonstrating the effect of fiber architecture on the yield surfaces of unidi-
rectional composites. The response to thermal loads also has not been investigated in
sufficient detail in the presence of inelastic effects. The work involving inelastic matrix
behavior has been limited primarily to classical incremental plasticity_ as well as some
steady-state creep, description of the matrix behavior. No unified viscoplasticity theories
have been employed to model the rate sensitive response of the matrix phase under com-
bined thermo-mechanical loading. Primary creep behavior for composites with different
fiber architectures does not appear to have been investigated as well. The response of
composites in the presence of damage is just beginning to be addressed, with the empha-
sis on interracial debonding or failure. However, the evolution of damage in the matrix
phase during creep or cyclic loading thus far has not been addressed. The above areas,
together with extension of the investigations discussed in the foregoing to multi-phase
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composites, open up new opportunities in this exciting new phase of composite material
development and design.

2.2 Discontinuous Fiber Composites

• The early work on the principles of strengthening in composites reinforced with dis-
continuous fibers, whiskers or particulates carried out in the 1950's and 1960's is charac-
terized by the use of relatively simple models that do not explicitly take into account the
actual inclusion distribution through interaction between adjacent fibers. These models

have been employed to study the effect of inclusion shape on the elastic moduli, as well as
subsequent inelastic response, and also the mechanism of stress transfer from the matrix
to a finite-length fiber. For instance, Eshelby's analytical solution to the problem of an
arbitrarily shaped eUipsoidal inclusion embedded in an homogeneous material deformed
by uniform tractions or displacements at infinity has formed the basis for calculating the
effective response of macroscopically homogeneous two-phase composites using a num-
ber of approaches (Eshelby, 1957). These approaches include the self-consistent scheme
which neglects the inclusion/matrix interaction in calculating stress fields in the inclu-
sion phase (Hill, 1965), and the Mori-Tanaka method which takes this interaction into
account in an approximate fashion (Mori and Tanaka, 1973). The problem of an array of
ellipsoidal inclusions with different aspect ratio embedded in an elastoplastic matrix can
be treated using the Mori-Tanaka approach, as was done by Brown and Clarke (1975)
in investigating the effect of inclusion shape on work hardening of metal matrix compos-
ites. However, this method typically underestimates yielding and subsequent hardening
effects due to the use of mean stress and strain fields in the matrix phase, and treats
all inclusion distributions on the same footing so long as macroscopic homogeneity is
preserved. Along similar lines, the so-called shear-lag analysis has been employed to
study the effectiveness of short fibers as reinforcement using the strength-of-materials
approach to analyze stress fields around and within a finite-length fiber embedded in a
surrounding matrix (Dow, 1963). While this type of analysis helps to identify shearing
of the matrix as the primary mechanism of force transfer from the matrix to the fiber,
and thus the critical fiber length over which the axial stress is introduced into the fiber
from both ends, it is based on a very simplified one-dimensional analysis of stress fields
which neglects the influence of morphology of surrounding fibers, among other things.

Despite the relatively long history of modeling the response of discontinuous fiber
composites, only recently systematic investigations of the eiTects of reinforcement shape
and arrangement have been initiated for these types of composites. Inclusion of the
third dimension in the analysis of the elastic and inelastic response of discontinuous
fiber composites increases the number of variables several fold relative to the analysis
of continuous fiber composites. Thus, in addition to the arrangement and shape of the
reinforcement in the plane transverse to the loading direction, variables associated with
the planes parallel to the loading direction must be included. These variables include
the fiber aspect ratio, fiber spacing in the vertical and horizontal directions, including
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the effect of fiber clustering, and the extent of overlap between adjacent columns of
fibers. The added complexity typically requires numerical solution procedures, such as
the finite-elements analysis, if complicated reinforcement shapes and arrangements are
involved.

The finite-element investigations carried out in recent years have focused on separat-
ing the effects of inclusion shape from the effects of inclusion array geometry on the overall
elastic, elastoplastic and creep behavior. Examples of different inclusion shapes investi-
gated include spherical particles, circular cylinders with different aspect ratios, truncated
circular (octagonal) cylinders, double-cone particles, and ellipsoidal or disk-like particles.
The different arrays studied include hexagonal arrangements of inclusions in the plane of
loading distributed in either regular (aligned) arrays or off-set (staggered) arrays in the
planes parallel to the loading direction. Inclusions such as disk-like particles arranged in
packet morphologies have also been considered, as have clustered arrangements. These
investigations have been driven in large part by the wide range of inclusion morphologies
that result from current processing techniques, as well as by the wide range of shapes
available for the inclusion phase.

In order to reduce the complexity of a three-dimensional finite-element formulation in
analyzing the response of discontinuous fiber, whisker or particulate composites, various
idealizations of the unit cell have been employed by a number of researchers (c£ Christ-
man, et al., 1989; Tvergaard, 1990; Dragone and Nix, 1990; Povirk et al., 1990, 1992;
Yang et al., 1991; Bao et al., 1991). For instance, in the case of a hexagonal array of
inclusions in the plane transverse to the loading direction, the problem is often reduced
to an axisymmetric (i.e., two-dimensional) problem by approximating the unit cell using
a circular cylinder with different types of lateral boundary conditions to simulate the
interaction with adjacent fibers (i.e., unit cells). Using this model, different fiber ar-
rangements in the plane parallel to the applied load have been investigated, with varying
amounts of overlap between vertical columns of adjacent fibers. The results of limited
fully three-dimensional finite-element analyses of such periodic arrays are also available
(Levy and Papazian, 1990), and these results support the general conclusions obtained
from the simplified models. Alternatively, clusters of whiskers or cylindrical particles in
the plane parallel to the applied load have been modeled using a plane strain idealization
of rectangular platelets. This effectively reduces the problem to that of a continuously
reinforced composite subjected to loading in the plane perpendicular to the long fiber
direction. The results of such analysis for rectangular cross-sectious with different aspect
ratios in the plane of loading should be easily deduced from the early analysis of contin-
uously reinforced composites with rectangularly shaped fibers discussed in the preceding
sections (cf. Ashton et al., 1969).

Christman et al. (1989) employed the axisymmetric cell model with cylindrical and
spherical inclusions arranged in a regular (non-staggered) array to study the effect of
the inclusion and cell aspect ratio on the elastoplastic response of whisker and particu-
late reinforced metal matrix composites. The plane strain model was also employed to
characterize the effect of whiskers clustering in the plane of loading on the overall and
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local behavior. The development of triaxial stresses within the matrix due to constraint
imposed by the reinforcement was shown to provide an important plastic strengthening
contribution. These stresses are influenced by the inclusion shape and distribution, with
the variation in the inclusion distribution in clustered arrays playing a greater role in
the development of these stresses than the variation in whisker or cell aspect ratio in
regular arrays. Since triaxial stresses are elevated in the vicinity of inclusion comers
and are enhanced by plasticity, spherical inclusions are not as effective as cylindrical
inclusions because the hydrostatic stress around spheres is not as large as around cylin-
ders, thereby providing smaller constraint on the deformation. This explains why little
strain-hardening is observed in composites reinforced by spheres at low inclusion concen-
trations relative to composites reinforced by particulates (i.e. unit cylinders) or whiskers

(i.e. cylinders with aspect ratio greater than one). At low inclusion concentrations, the
effect of clustering was found to be more important £or whisker reinforced composites
than particulate composites. Horizontal clustering (perpendicular to the load direction
in the plane of loading) was shown to have no effect on the elastic modulus, while pro-
nouncedly reducing the composite flow strength. This reduction was accompanied by a
decrease in the triaxial stress state. Vertical clustering produced more dramatic reduction
in the apparent flow strength than horizontal clustering.

The axisymmetric unit cell and plane strain models were also employed by Dragone
and Nix (1990) to investigate the effect of reinforcement phase geometry on the creep
response of discontinuous fiber metal matrix composites. The fiber volume fraction, fiber
and unit cell aspect ratios, separation distance between adjacent fibers and the extent

of fiber overlap (in clustered arrays) were shown to greatly influence the degree o£ con-
straint through development of triaxial stresses that control matrix flow, and ultimately
to influence the overall composite deformation. For the same fiber concentration and as-
pect ratio, the aligned fiber composite (modeled by the axisymmetric unit cell) provided
more constraint on the matrix deformation than the staggered array (modeled by the
plane strain model of aligned platelets in the direction of loading), and resulted in lower
creep strains. Based on the axisymmetric cell model, increasing both fiber and unit cell
aspect ratio was more effective in reducing creep than increasing the fiber aspect ratio
alone while keeping the inter-fiber distance constant. This is due to a higher degree of
constraint achieved when the fiber spacing is allowed to decrease with proportionally
increasing unit cell aspect ratio. Alternatively, increasing the side-to-side fiber spacing
initially reduces the constraint on creep deformation, producing an increasing amount of
creep until the effect of the decreasing fiber end-to-end spacing reverses the trend. The
results of the plane strain model revealed that as the fiber overlap increased, greater
hydrostatic stress and less shearing were produced in the matrix, and consequently the
creep rate decreased.

A more accurate method of modeling staggered arrays was employed by Tvergaard
(1990) using the axisymmetric, hexagonal array model with special boundary conditions
to approximate the inclusion interaction. This approach better models the plastic shear-
ing of the matrix between fiber ends in adjacent, vertically shifted fibers than the plane
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strain model employed by other researchers. The effect of different periodic whisker pat-
terns on the composite stress-strain response was investigated by varying the fiber and
the cell aspect ratio, which control the fiber spacing and the extent of fiber overlap,
together with the inclusion concentration. Relatively little influence of the cell aspect
ratio was observed, which was explained by the competing effects of increasing overlap
of adjacent fibers and increasing transverse spacing between adjacent fiber ends with
decreasing cell aspect ratio. The effect of the fiber aspect ratio was substantially more
pronounced than equivalent changes in the cell aspect ratio. The greatest effect on the
macroscopic stress-strain response was due to variation in the inclusion volume fraction.

The axisymmetric unit cell model was also employed by Povirk et al. (1990) to
study the effect of whisker spacing, aspect ratio and concentration on the evolution of
residual stresses in regularly spaced (unstaggered) arrays. The side-to-side fiber spacing
was concluded to be the most important parameter affecting the evolution of residual
stresses and plastic matrix strains, while the fiber aspect ratio had little effect. This is
because residual stresses were found to be independent of axial position a short distance
from the fiber end. The plastic deformation was found to be confined to areas relatively
close to the whiskers, and the volume of average plastic strains was primarily dependent
on the whisker volume fraction with relatively little sensitivity to variation in the fiber
and unit cell aspect ratios. Reduced residual compressive stresses were found in the areas
of close side-to-side whisker spacing, thereby potentially promoting early void nucleation.

In a subsequent investigation, Povirk et al. (1992) employed the axisymmetric cell
model to investigate the response of whisker and particulate metal matrix composites to
mechanical loading in the presence of residual stresses due to a rapid quench. The mod-
eling work was correlated with the results of neutron diffraction experiments from which
residual elastic strains as a function of deformation were obtained. Parametric studies

for the dependence of flow strength and residual strains on the fiber and unit cell aspect
ratios, as well as fiber spacing and shape, were conducted in view of the lack of consis-
tently quantitative correlation between theory and experiment. While the effect of the
fiber aspect ratio on initial residual stresses was found to be small (as shown previously
by the authors), the tensile flow strength and composite residual stresses after plastic
deformation were influenced significantly by the fiber aspect ratio. The effect of the unit
cell aspect ratio on flow strength was found to be smaller relative to the fiber aspect
ratio. The flow strength increased with increasing fiber aspect ratio and increasing unit
cell aspect ratio (decreasing side-to-side spacing, increasing end-to-end spacing). While
thermal residual stresses were strongly affected by fiber spacing (as shown previously),
fiber spacing was found to have a small effect on composite residual stresses after plastic
deformation. Parametric studies involving cylindrical, ellipsoidal and conical reinforce-
ment revealed that, for a fixed inclusion concentration, ellipsoidal inclusions produced the
lowest proportional limit (lowest strengthening effect), while conical inclusions produced
the highest. The asymptotic stress-strain behavior of a composite reinforced by cylindri-
cal inclusions approached that of a composite reinforced by conical inclusions from below.
The residual strains after plastic deformation were found to be substantially influenced
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by inclusion shape, with conical reinforcement producing smallest deformation-induced
residual stresses and cylindrical reinforcement highest.

Papazian and Adler (1990) conducted an experimental investigation on the strength-
ening effects of SiC particulates and whiskers on solution and precipitation hardened alu-
minum alloy matrix with different microstructures produced by aging. Not surprisingly,
whiskers were found to be more effective than particulates in increasing the elastic mod-

ulus and strengthening the matrix against plastic flow. Increasing the whisker content
produced a continuous increase in the elastic modulus, and an initial decrease in the pro-
portional limit followed by an increase. The non-monotonic behavior of the proportional
limit with increasing whisker content was suggested to be the result of two competing
mechanisms, namely local stress concentrations at fiber ends and local constraint on the
plastic deformation of the matrix due to adjacent fibers. The first mechanism dominates
at low whisker concentrations, thereby initially lowering the proportional limit due to
localizing yielding, while the second mechanism dominates at higher whisker concentra-
tions, effectively constraining the plastic deformation in the matrix through development
of high triaxial stresses as shown in a follow-up finite-element analysis. An important
conclusion of the investigation was that for low inclusion concentrations (up to 20 per-

cent), the flow behavior of the composite was more sensitive to matrix microstructure
than to the addition of the SiC reinforcement.

In a subsequent investigation, Levy and Papazian (1990) conducted a three-dimensional
finite-element analysis aimed at studying the effect of fiber and unit cell aspect ratio, and
fiber distribution, on the effective stress-strain behavior of whisker reinforced composites.
Both transversely aligned (unstaggered) and staggered arrays of cylindrical inclusions
with a wide range of aspect ratios were investigated using a square packing arrangement
in the plane perpendicular to the loading direction. For the unstaggered array subjected
to longitudinal loading, increasing the fiber and unit cell aspect ratio in the same propor-
tion at a fixed fiber concentration increased the effective elastic modulus, proportional

limit, and work-hardening rate. For a fixed fiber and unit cell aspect ratio, both elastic
modulus and work-hardening rate increased with increasing fiber concentration, while
the proportional limit first decreased and then increased. These results duplicate the
trends in the previously reported experimental data discussed above. Comparison of the
staggered and unstaggered arrays at a fixed fiber concentration (20 percent) revealed
that for low fiber and unit cell aspect ratios, the staggered array produces less work
hardening and lower proportional limit, while for high aspect ratios the staggered array
exhibits more work hardening and greater proportional limit. The differences between
the staggered and unstaggered arrays diminish as the fiber aspect ratio is decreased.
Comparison with experimental data revealed that a hybrid of the two models is required
to accurately predict the initiation of yielding and subsequent hardening behavior of an
aluminum alloy matrix containing 20 percent SiC whisker reinforcement. The results
generated for both arrays subjected to transverse loading revealed a remarkable insensi-
tivity of the transverse elastic properties and initial yield to variations in the fiber aspect
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ratio. The work-hardening behavior under transverse loading was also not significantly
affected by the fiber aspect ratio.

Bao et. al. (1991) employed the axisymmetric unit cell model to study the influence
of inclusion shape, distribution and concentration on the flow strength of a ductile matrix
reinforced by rigid inclusions. Uniform arrays of spheres, ellipsoidal and cylindrical in-
clusions in an elastic-perfectly plastic matrix were investigated using the unit cell model,
and predictions for the flow strength of aligned ellipsoidal inclusions with different aspect
ratios were compared to randomly oriented disc-like or needle-like particles arranged in
a packet-like morphology. For an elastic-perfectly plastic matrix, little dependence of
the flow stress on the concentration volume of spherical inclusions was observed in the
dilute concentration range (up to 20 percent). Comparison of the flow stress for spherical
particles with a three-dimensional cubic array analysis for concentration volumes up to
40 percent suggested that the flow strength is not significantly influenced by the actual
regular distribution of spherical particles. Comparison of the flow strength for spherical,
ellipsoidal and disk-like particles illustrated that the influence of the inclusion shape be-
comes increasingly significant with increasing aspect ratio and inclusion concentration.
The needle-shaped inclusions were the most effective reinforcement against plastic flow,
followed by disk-like particles and finally spheres. At low concentrations, the unit cell
aspect ratio did not have a significant effect on the composite flow strength for spherical
and disk-like reinforcement until particle spacing became small at which point the flow
stress increased rapidly. Substantially more dependence of the flow strength on the unit
cell aspect ratio was observed for the needle-shaped particles. Comparison of the compos-
ite flow strength for aligned needle-like and disk-like inclusions with randomly oriented
needles and disks arranged in a packet-like morphology as a function of the inclusion
concentration demonstrated that particle randomness destroys the shape advantage in
aligned arrays. In particular, randomly oriented disks and needles produced similar re-
sults which were substantially lower than the corresponding results for aligned needle-like
and disk-like particles, thus diluting the advantage of aligned needles over disks. Calcu-
lation of the flow strength for cylindrical reinforcement with different aspect ratios as a
function of inclusion concentration revealed trends qualitatively similar to those observed
for the ellipsoidal inclusions. The effect of the actual shape of the inclusion on the flow
strength, however, was demonstrated to be substantial. For example, unit cylinders were
twice as effective as spheres in increasing the composite flow strength at low inclusion
concentrations. At higher aspect ratios, the difference between the effect of cylindrical
shaped particles and ellipsoidal particles was less dramatic, but still appreciable.

Yang et al. (1991) conducted a carefully-controlled experimental investigation on A1-
SiC composites reinforced with particulate inclusions and randomly oriented platelets,
and compared the experimentally determined stress-strain response with that predicted
by the approach of Bao et al. (1991). Generally good correlation between theory and
experiment was obtained. The major conclusion supported the theoretical prediction
that strengthening by equiaxed particles was approximately as effective as strengthening
by randomly oriented platelets with a ten to one aspect ratio.
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The problem of matrix cracking due to thermal expansion mismatch was investigated
by Lu et al. (1991) as a function of the inclusion shape and size (and to a smaller extent

. fiber array geometry) in order to define under what conditions transverse matrix cracks
and radial cracks emanating from a fiber/matrix interface could be suppressed. A crit-
ical reinforcement size was shown to exist below which matrix cracking is suppressed.

• A non-dimensional cracking coefllcient, dependent on the misfit strain, matrix tough-
ness and modulus, and reinforcement size, was successfully used to characterize cracking
susceptibility of composites reinforced by different types of reinforcement.

In a sequence of papers, McHugh et al. (1993a-d) used an elastic-viseoplastie two-
dimensional polycrystal finite-element model based on crystallographic slip theory to
investigate the localization of plastic deformation as a function of inclusion morphology
and volume fraction. The composite was modeled by an array of hexagonal grains rein-
forced by hexagonal inclusions arranged in several different morphological patterns. The
authors found that the localization of plastic deformation evolved in patterns determined

by the positions of reinforcing particles, and depended primarily on the inclusion volume
fraction and morphology and less on the matrix hardening behavior. The effect of the
morphology becomes more important with increasing inclusion volume fraction. Two
of the patterns considered, rectangular and rhombus, had the same inclusion volume
fraction making possible comparison of the influence of the inclusion array on plastic
deformation. Under transverse loading the rectangular arrangement produced higher
strain concentrations in the matrix near the inclusions, and lower strains elsewhere in

the matrix, compared to the corresponding strains in the rhombus arrangement. Thus the
rectangular arrangement provided a stronger constraint on plastic flow than the rhombus
arrangement because a lower volume of the matrix was subjected to concentrated strain.

The influence of fiber architecture on the thermal expansion behavior of discontinuous

fiber composites is still a relatively unexplored area. Siegmund et al. (1992) used the
axisymmetric unit cell model to investigate the influence of unit cell aspect ratio on the
axial thermal expansion response of staggered and non-staggered arrays at fixed fiber
volume fraction and fiber aspect ratio. Varying the unit cell aspect ratio corresponds
to moving fibers closer together in one direction and farther apart in the other. It was
found that this variation had little effect on the axial thermal expansion of the staggered

arrangement, but in the non-staggered arrangement larger unit cell aspect ratios (i.e.,
larger end-to-end and smaller side-to-side fiber spacing) lead to a significantly larger
amount of thermal expansion.

In a more comprehensive investigation, Weissenbek and Rmmmerstorfer (1993) used
the axisynm_etric unit cell to investigate the influence of staggered (overlapping and
non-overlapping) and non-staggered fiber arrangements on both mechanical and thermal
expansion behavior of discontinuous fiber composites. A full three-dimensional unit cell

• model employed tovalidate the use of the axisyrmnetric approach confirmedthe accuracy
of the two-dimensional approach. The effect of residual stresses on subsequent thermal
expansion and mechanical behavior was included in the calculations. While the global
mechanical behavior of the composite was not strongly influenced by the inclusion ar-
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rangement in contrast to the thermal expansion behavior, the local microstresses differed
significantly in the investigated arrangements. Despite this, the evolution of damage
based on matrix plastification did not lead to significant differences in the predicted fail-
ure stress for the different arrangements considered. This lack of difference was due to
low sensitivity of the tensile stresses at the fiber ends that controlled failure on the fiber
arrangement. Additional results on the response of discontinuous fiber composites with
strong and weak interfaces in the presence of damage due to matrix plastification and
interface failure using the above modeling approach and fiber arrangements have been
presented by Abel et al. (1993).

Weissenbek et al. (1993) investigated the influence of inclusion shape and arrange-
ment on the response of particulate-reinforced composites subjected to both mechanical
and thermal loading. Both two-dimensional axisymmetric and three-dimensional unit
cell models were employed. Spherical, cubical and unit cylindrical inclusions in sim-
ple cubic, face-center cubic and body-center cubic arrays were considered, along with
unit cylinders in staggered and unstaggered square arrays. Substantially more strain-
hardening was observed in the simple cubic arrangement of spherical inclusions than in
the face-centered and body-centered cubic arrangements which both exhibited similar
stress-strain response. This was due to the greater geometric constraint on the matrix
deformation imposed by the simple cubic arrangement that produced higher hydrostatic
matrix stresses relative to the other arrangements. For a given inclusion arrangement,
the spherical inclusions produced substantially more compliant response than the unit
cylindrical and cubical inclusions, which exhibited approximately the same amount of
work hardening. In contrast to the mechanical response, the overall thermal expansion
behavior of the three cubic configurations did not exhibit significant dependence on the
particle arrangement.

Using the axisyrnmetric unit cell model, Shen et al. (1994) have performed extensive
calculations to determine the elastic moduli of composites with uniformly distributed

spherical, cylindrical, octagonal and conical inclusions. The plane strain model was also
employed by the authors to investigate the dependence of elastic moduli on inclusion
distribution. For a fixed inclusion aspect ratio, the conical inclusion produced the lowest
value of the Young's modulus while the cylindrical inclusion the highest. The differences
between the elastic moduli increased with increasing volume fraction of the inclusion, as
well as increasing mismatch between the elastic properties of the inclusion and matrix
phases. The differences observed were attributed to the differences in the load transfer
capability for the investigated shapes. The results of the plane strain model revealed that
the square array produced the stiffest response while the square diagonal array the softest.
Square and square diagonal arrays with more than one inclusion size exhibited elastic
moduli between these two extremes. The differences between the effective moduli for

the different fiber distributions increased with increasing constituent property mismatch.
These differences were attributed to the differences in the hydrostatic stress distributions
which provided a constraint on the matrix shearing, thereby stiffening the elastic response
for the distributions with a large hydrostatic stress component.
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2.2.1 Discontinuous Fiber Composites Literature Summary

As in the case of continuously-reinforced composites, the investigations addressing
the effect of inclusion architecture on the response of discontinuously-reinforced com-

posites are characterized by predominant use of finite-element analysis of an idealized
unit cell whose macroscopic behavior is representative of the composite. Due to many
different types of reinforcement employed in discontinuously-reinforced composites, in-
cluding whiskers, particulates, platelets as well as finite-length fibers, extensive analyses
of inclusion shape have been conducted for this class of composites. Reinforcement
shapes investigated include spheres, ellipsoids, cylinders of varying aspect ratios, trun-
cated cylinders (octagons), cubes, platelets, and disk-like and needle-like inclusions. The
different types of inclusion distributions that are possible in discontinuously-reinforced
composites are typically modeled using two-dimensional axisymmetric unit cell models
of hexagonal arrays in the plane perpendicular to the applied load, with different lateral
boundary conditions that approximately model interaction between adjacent inclusions.
Both unstaggered and staggered arrays parallel and perpendicular to the load axis in
the plane of loading have been investigated in order to model and assess the influence
of randomness that is typical of distributions in discontinuously-reinforced composites.
Limited amount of data obtained with three-dimensional finite-element models generally

supports the use of the two-dimensional axisymmetric unit cell models for the investi-
gated fiber architectures. These models have been used to study the effect of inclusion
shape and spacing on the composite response in periodic arrays. To investigate inclusion
clustering effects in the plane of loading, plane strain models of inclusions with square
cross sections have been employed that, in essence, do not differ from the analysis of
continuous fiber composites under transverse plane strain loading.

In contrast with the work on continuously reinforced composites reviewed in Section
2.1, the investigations dealing with discontinuously-reinforced composites put a substan-
tial emphasis on the reinforcement principles, the associated mechanisms, and how these
mechanisms are affected by fiber architecture. As in the case of continuously-reinforced
fibers under transverse load, the fiber architecture significantly affects the macroscopic
response of discontinuously-reinforced composites through stress transfer from the matrix
to the fiber, and through constraining the shearing deformation in the matrix phase. The
fiber volume fraction naturally plays a significant role in controlling these mechanisms

through the interaction between adjacent fibers.
Table III provides a summary of those investigations discussed in the foregoing which

provide explicit comparison of the influence of the different fiber architectures on the
response of discontinuously-reinforced composites. As is observed, the majority of inves-
tigations have focused on the inelastic response of these composites subjected to normal
loads, with some recent attempts at systematically characterizing the influence of fiber
architecture on the elastic moduli and to some extent damage.
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2.3 Summary of Major Results and Future Perspectives

The literature survey presented in the foregoing sections indicates significant influence
of both inclusion shape and distribution on the elastic, elastoplastic and creep response
of continuous and discontinuous fiber composites. The extent of this influence for a given
fiber architecture depends on the inclusion content, inclusion/matrix material property 0

mismatch, and the direction of applied load with respect to the internal microstructure.
For instance, the elastic, elastoplastic and creep response of continuously reinforced com-
posites under longitudinal normal loading is virtually unaffected by fiber shape and fiber
distribution, whereas substantial differences are observed in the transverse normal and
shear, as well as longitudinal shear, response of composites reinforced by differently
shaped fibers with different internal arrangements.

The work on discontinuously reinforced composites sheds light on the mechanisms
at the micromechanics level that produce these shape- and distribution-dependent differ-
ences in the macroscopic composite response. Broadly speaking, the shape of an inclusion
affects the stress transfer characteristics from the matrix to the fiber, which in turn render

certain inclusion shapes more effective than others in reinforcing the matrix material. For
this mechanism to play a role, the major loading component applied to the composite has
to result in direct stress transfer between the phases. Since higher stresses are induced

into square fibers under transverse loading than circular fibers, the transverse elastic
moduli of composites continuously reinforced by square fibers are higher than those of
circular fiber composites. The inclusion shape also directly influences the matrix stresses
at and in the immediate vicinity of the inclusion/matrix interface. Inclusions with sharp
corners produce high triaxial (hydrostatic) stresses at these locations, which locally con-
strain the extent of plastic strain evolution. Thus composites continuously reinforced
with square fibers will exhibit higher yield stresses and hardening rates (and lower creep
strains) under transverse loading than those reinforced by circular fibers. The extent of

stress transfer and stress triaxiality for a given fiber shape increases with the fiber vol-
ume fraction and the material property mismatch between constituents. Consequently,
differences in the response of continuously reinforced composites caused by differences
in the fiber shape are small at low fiber volume fractions due to localized influence of
non-interacting reinforcement and became more pronounced with increasing fiber volume
fraction and material property mismatch.

The internal arrangement of inclusions, on the other hand, directly affects the distri-
bution of stress triaxiality throughout the matrix phase which, in turn, constrains the
magnitude of shear deformation under transverse loading and thus stiffens the matrix.
This mechanism is more effective than the fiber shape in strengthening the matrix because
its effect tends to be global rather than local at sufficiently high inclusion concentrations.
For instance, a square array of fibers of a given cross-sectional shape will exhibit a stiffer
response under transverse loading than a square-diagonal or hexagonal array of the same
fibers because of higher hydrostatic stresses and lower shear stresses in the matrix.

The influence of fiber architecture on the composite response becomes more pro-
nounced after initiation of yielding in the matrix phase. The differences in the magni-
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tudes and distributions of hydrostatic stresses in the matrix caused by the differences
in fiber architecture result in substantially different distributions and evolution rates of
plastic strains. The plastic strain evolution is spatially nonuniform and nonproportional
with respect to the externally applied loads, magnifying the differences in the response of
composites with different architectures relative to their elastic response. As in the case

• of elastic moduli, these fiber architecture induced differences depend on fiber content, as
well as fiber/matrix property mismatch.

The above observations briefly summarizing the influence of fiber architecture on the
response of continuous and discontinuous fiber reinforced composites and are based on
a substantial number of investigations, each of which was necessarily limited in scope
due to the prevalent use of the finite-element approach in modeling the response of the
investigated architectures. Thus while a considerable body of knowledge has been gener-
ated that sheds light on the effectiveness of different fiber architectures in strengthening
continuous and discontinuous fiber composites, considerably more systematic research is
required to develop design guidelines for optimization of material performance through
fiber architecture manipulation. In particular, rate-dependent description of the matrix
phase based on currently available unified viscoplasticity models has not been extensively
employed in investigating the effects discussed in the foregoing. Incorporation of unified
viscoplasticity models into micromechanical analyses of composites with different fiber
architectures will make possible investigation of the effects of microstructural details
on the composite response in a wide range of temperatures and loading rates, includ-
ing rate-independent and rate-dependent stress-strain response, and primary, as well as
steady-state, creep response. Investigation of the influence of fiber architecture on ini-
tial yielding under multi-axial loading is another area that has not been fully exploited.
Considerably more work is also required in studying the effect of fiber architecture on the
composite response in the presence of damage evolution in the individual phases. This
includes such explicit mechanisms as fiber/matrix interracial debonding, fiber or matrix
cracking (either in the radial or transverse direction), and cavitation (cf. Ochiai and Os-
amura, 1989a,b; Zhenhai et al., 1991; Karbhari and Wilkins, 1991; Pagano and Brown,
1993). Incorporation of appropriate continuum-based models to describe gradual degra-
dation of the matrix phase under thermo-mechanical fatigue loading in order to develop
life-prediction guidelines is a related topic that remains to be broached. Clearly, each one
of the above topics is relevant to multi-phase and functionally graded composites which
are just beginning to be investigated.

It becomes clear, based on the above discussion, that in order to investigate the enu-
merated effects in an efficient and comprehensive manner, including parametric studies
involving fiber content and material property mismatch variations, an approach other
than the finite-element based micromechanics approach is required. This is particularly

' true when unified viscoplastic theories, which typically require computationally intensive
integration algorithms, are employed to model the response of metallic matrices. The
two-fold objective of the remainder of this paper is to, 1) illustrate that MAC/GMC
is a micromechanics code ideally suited for both an accurate and efficient investigation
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of themany differentfeaturesofthemacroscopicresponseof"metalmatrixcomposites
withdifferentfiberarchitecturesand 2)todocumenttheinfluenceoffiberarchitecture

ontheinelastic(viscoplastic)behaviorofMMCs. As thefirststepinmeetingthisobjec-
tive,thepreviouslydocumentedfeaturesofcontinuouslyreinforcedcomposites'behavior,
characteristicofspecificfiberarchitectures,arereproducedusingMAC/GMC. Results
are presented that correctly demonstrate the relative effects of fiber arrangement and
fiber shape on the longitudinal and transverse stress-strain and creep response of a SCS-
6/TIMETAL 21S 1 composite with a strong or weak fiber/matrix inteffacial bond. Note
that TIMETAL 21S is an advanced titanium-based matrix used in TMCs. The fiber ar-

rangements include square, square diagonal, hexagonal and rectangular periodic arrays,
as well as a random array. The fiber shapes include circular, square and cross-shaped
cross-sections given a square packing arrangement. The effect of fiber volume fraction
on the observed stress-strain response is included, as is the thus-far poorly documented
strain rate sensitivity effect. In addition to the well-documented features of architecture-
dependent response of continuously reinforced two-phase metal matrix composites, new
results involving multi-phase internal architectures are presented. Specifically, stress-
strain and creep response of composites with different-size fibers having different internal
arrangements are investigated with the aim of determining the feasibility of using this
approach to enhance toughness and creep resistance of metal matrix composites.

3 GENERALIZED METHOD OF CELLS

The generalized method of cells is a recent and natural extension of a micromechanics
model, known in the literature as the method of cells (MOC), which was developed
by Aboudi (1989, 1991) for predicting the response of metal matrix composites and
will now be briefly summarized. In the original formulation of MOC, a continuously
(or discontinuously) reinforced composite is modeled as a doubly (or triply) periodic
array of fibers or inclusions embedded in a matrix phase. The periodic character of the
assemblage allows one to identify a repeating unit cell that can be used as a building
block to construct the entire composite. The properties of this repeating unit cell are
thus representative of the properties of the entire assemblage. The unit cell consists of a
single fiber (or inclusion) subcell embedded in three matrix subcells for continuous, and
seven matrix subcells for discontinuous composites, hence the name method of cells.
The Cartesian geometry of the repeating unit cell allows one to obtain an approximate
solution for the stresses and strains in the individual subcells given some macroscopically
homogeneous state of strain or stress applied to the composite. The approximate solution
to the thus posed boundary-value problem is, in turn, used to determine macroscopic
(average) or effective properties of the composite and the effective stress-strain response
in the inelastic region.

1TIMETAL21S is a registered trademark of TIMET, Titanium Metals Corporation, Toronto, OH.
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Although MOC has been demonstrated in numerous experimental/analytical corre-
lation studies to be an accurate and, at the same time, efficient tool for analyzing the
inelastic response of metal matrix composites over a wide temperature range, it suffers
from several drawbacks. The use of four (or eight) subcells limits the analysis of con-
tinuous (or discontinuous) MMC's to essentially two-phase composites with a limited

• number of fiber or inclusion arrays. Only regular arrays with, at most, two different fiber
spacings or three inclusion spacings can be analyzed by the original method. This sparse
discretization of the unit cell also precludes the possibility of including an interracial re-
gion between the fiber and the matrix phases, as well as considering more complicated (or
refined) fiber shapes. The transversely isotropic behavior of unidirectional composites in
the plane perpendicular to the fiber direction is imposed artificially by equating the unit
cell dimensions in the plane perpendicular to the fiber direction and subsequently aver-
agingouttheeffectofthesquaregeometryoftheunitcell.Theselimitationsmotivated
the development ofthe generalized method ofcells or GMC.

In the generalized formulation for continuous (or discontinuous) multiphased com-
posites, the repeating unit cell is subdivided into an arbitrary number of subcells or
phases. Hence this generalization extends the modelling capability of the original method
of cells to include the following: 1) inelastic thermomechanical response of multi-phase,
metal matrix composites, 2) modelling of various fiber (phase) architectures including
both shape and packing arrangements, 3) modelling of porosities and damage, and 4) the
modelling of interracial regions around inclusions, including interEacial degradation.

The basic homogenization approach taken in the mieromeehanieal analysis consists es-
sentially of four steps. First, the representative volume element, RVE, (or repeating unit
cell) of the periodic composite is identified. Second, the macroscopic or average stress
and strain state in terms of the individual microscopic (subcell) stress and strain states is
defined. Third, the continuity of tractions and displacements are imposed at the bound-
aries between the constituents. These three steps, in conjunction with micro-equilibrium,
establish the relationship between micro (subcell) total, thermal, and inelastic strains and
macro (composite) strains via the relevant concentration tensors. In the fourth and final
step, the overall macro constitutive equations of the composite are determined. These
four steps form the basis of the micro-to-macro mechanics analysis which describe the
behavior of heterogeneous media (Aboudi, 1989 and 1994). The resulting micromechani-
cal analysis establishes the overall (macro) behavior of the multi-phase composite and is
expressed as a constitutive relation between the average stress, and total, thermal, and
inelastic strains, in conjunction with the effective elastic stiffness tensor.

Thus, the average stress is represented as,

= - d - (1)
where for the most general case o£ discontinuous reinforcement with N_ by N_ by N_
number of subcells (see Fig. 2), the effective elastic stiffness tensor, B*, of the composite
is given by,
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1 N_N_N_
B'= _-RE E E _°h_%c(°`87)A('_) (2)

a=l `8=1 7=1

and the composite inelastic strain tensor is defined as,

_ _ _2_ _2_°h_%C(O_)(D(°_%_- _'(°`8_)) (3)
a=l `8=17=1

and the average thermal strain tensor as

_T= --B*-IN= N_ N_dh-------C_ _ _ d°h`8_C(°_)(D(°`8_)_ - _(°`8_))) (4)a=1,8=1 7=1

and E is the uniform applied macro (composite) strain. For the case of continuous rein-
forcements with N_ by N`8number of subcells, eqs. (2) - (4), reduce to the following:

1N_N_

B"= _ !: E h_c(`8_)A(`87) (5)
`8=17=1

az _B,_ 1 N_ N_
`8=1 q=l

_T _B,__N_N__ _ _:h`8_TC(_)(D(`87)_-_7))) (7)
`8=17=1

In the above equations matrix notation is employed; where, for example, the average
z vector represent,stress _,average applied strain, _, and inelastic subceU strain, _8,

_= (_11, V_ ,_, _, Via, V12) (8)

= (_u, [_2, _, 212a, 2g,a, 2[_2) (9)

, (_,(-_) .,_'(_oN_)) (10)
where the six components of the vector _(_`87) are arranged as in eq. (8). Similar

T ,_.T(a,`sn)also exist. Note that the key ingredient in the construction o_definitions for _
this macro constitutive law is the derivation of the appropriate concentration matrices,
A (_,`8,7)and D (a'`8'7)having the dimensions 6 by 6 and 6 by N_,N`SN7 respectively, at the
micro (subcell) level. The definitions of A and D, although notgiven here, may be found
in Paley and Aboudi (1992), and Aboudi (1994). Finally, C ("'`8'7)represents the elastic
stillness tensor of each subcell (_flT) and da, h`8,f_ the respective subceU dimensions (see
Fig. 2) wherein,
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Similarly, given the concentration matrices A (_'_'_)and D (a'_'_),expressionsfor the
averagestrain in each subce11can be constructed, i.e.,

. = + + (11)
as well as average stress,

=cco  > + + - + (12)
The analytic constitutive law, see eq. 1, may be readily applied to investigate the

behavior of various types of composites, given a knowledge of the behavior of the indi-
vidual phases. Numerous advantages can be stated regarding the current macro/micro
constitutive laws as compared to the other numerical micromechanical approaches in the
literature, e.g. the finite element unit cell approach. One advantage is that any type
of simple or combined loading (multiaxial state of stress) can be applied irrespective
of whether symmetry exists or not, as well as without resorting to different boundary
condition application strategies as in the case of the finite element unit cell procedure.
Another advantage concerns the availability of an analytical expression representing the
macro elastic-thermoinelastic constitutive law thus ensuring a reduction in computational

costs and memory requirements when implementing this formulation into a structural fi-
nite element analysis code. Similarly, this formulation admits a wide variety of physically
based deformation (e.g. unified associative and nonassociative viscoplastic models) and
life models. Furthermore, this formulation has been shown to predict accurate macro be-
havior given only a few subcellswithinthe repeating cen (see Paley and Aboudi (1992),
Arnold et al. (1993) and Wilt (1995)). Alternatively, if one employs the finite element
unit cell procedure, a significant number of i_xlite elements are required within a given re-
peating unit cell to obtain the same level of accuracy as with the present formulation, see
Fig. 1. Consequently, it is possible to utilize this formulation to efficiently analyze metal
matrix composite structures subjected to complex thermomechanical load histories. This
is particularly important when analyzing realistic structural components, since different
loading conditions exist throughout the structure and thus necessitate the application of
the macromechanical equations repeatedly at these locations.

As mentioned previously, the computationally efficient and comprehensive microme-
chanics analysis code, MAC, whose predictive capability rests entirely upon the above
described generalized method of cells, was used to obtain all of the results given in the
next section. MAC enhances the basic capabilities of GMC by providing a modular
framework wherein 1) various thermal, mechanical (stress or strain control) and ther-
momechanical load histories can be imposed, 2) different integration algorithms may
be selected, 3) a variety of constituent constitutive model may be utilized and/or im-
plemented and 4) a variety of fiber architectures may be easily accessed through their
corresponding representative volume elements. The capabilities of MAC version 1.0 used
to generate the subsequent results are documented in Wilt and Arnold (1994).
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4 MAC/GMC RESULTS

The results presented herein will be limited to continuously reinforced composites. Al-
though the three-dimensional version of GMC recently developed by Aboudi (1994) can
be employed to efficiently investigate the influence of fiber architecture on the response of
short-fiber, whisker or particulate composites reviewed in Section 2.2, this will be reserved
for future work. The subsequent results are all qualitative in nature, in that no attempt
was made to 1) include any residual stresses induced during processing and 2) calibrate
the weak interface to be representative of the actual composite system's transverse re-
sponse. The primary objective of this study is to qualitatively assess the impact of fiber
architecture on the inelastic behavior of MMCs and to demonstrate that MAC/GMC
is fully capable of analyzing the wide variety of architectural eiTects discussed in the lit-
erature and more. To this end it is imperative that an accurate multiaxial viscoplastic
model representing the inelastic behavior of the titanium matrix (TIMETAL 21S) be
utilized. The fully associative, nonlinear kinematic hardening, generalized viscoplastic
with potential structure (GVIPS) model put forth by Arnold et al. (1994, 1994a,b, and
1995) has been shown to accurately capture the history dependent deformation response
(e.g. rate sensitivity, creep and relaxation) of TIMETAL 21S over a wide temperature
range. However, in this study all analyses were conducted at 650°C (or 1200°F). Finally,
unless otherwise specified a pseudo square fiber idealization is utilized for all architec-
tures, wherein the Young's modulus, Poisson ratio, and coefcient of thermal expansion
for the SCS-6 fiber were taken as E = 400 GPa, v = 0.32, c_= 2.1x10-6/°C, respectively.

4.1 Tensile Behavior

Let us begin by examining the qualitative tensile behavior of a 35 percent volume
fraction, square fiber array, SGS-6/TIMETAL 21S composite system. Figure 3 shows the
constituent (i.e., fiber and matrix), and, predicted longitudinal and transverse composite
stress-strain response of this system. As expected, the longitudinal response exhibits a
bi-linear stress-strain response whereas the transverse response, be it strongly or weakly
bonded, exhibits a nonlinear stress-strain response similar to that of the matrix material
(TIMETAL 21S) alone. Note that the strongly bonded transverse response is above
(whereas, the weakly bonded response falls below) the neat (fiber-less) matrix response,
thus capturing the qualitative experimentally observed behavior.

The imperfect or weakly bonded response illustrated in Fig. 3 can be simulated in
MAC/ GMC by either imposing some type of interface discontinuity condition at the
subcell boundaries (Aboudi (1988), Robertson and Mall (1993) and (1994)) or explicitly
defining an interface subcell with a finite thickness and its own constitutive response,
Aboudi (1993). The latter option was used here for all weakly bonded, transverse re-
sponse analyses performed; wherein the interface material comprised 10 percent of the
total volume fraction of the material. Note, although this idealization is not completely
consistent with the physics ofthe interfacial failure (in that, stress concentrations at the
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point of interracial separation are not induced), such an idealization adequately captures,
for deformation analysis purposes, the softening influence of the fiber/matrix interfacial
debonding. Also, this idealization is consistent with the approximate formulation of
GMC in that equilibrium and continuity are satisfied in an average sense, and thus
GMC would not be able to detect such a localized feature as stress concentrations at a
crack tip. Furthermore, an advantage to utilizing an interfacial layer, instead of interfa-
cial discontinuity conditions, resides in the consistent coupling of the multiaxial stresses
and differences in tension and compression behavior which are handled via the interfacial
constitutive model.

To illustrate the influence of various interfaelal constitutive models on the transverse
composite behavior, two types of interface models were assumed. The first was a purely
elastic model where the Young's modulus of the interface was assumed to be 10% and
1% respectively of the matrix modulus. The resulting stress-strain responses are shown
in Fig. 4. Note, how the initial effective modulus is significantly influenced by the pres-
ence of this interface region and how even under the slightest transverse tensile load the
stress-strain response deviates immediately (as no compressive residual stress state is
present) from that of the strongly bonded case. Although this elastic interface region
produces a macro response that is not consistent with experimental observations, other
researches using a similar idealization have documented this type of result. Alternatively,
an experimentally consistent macro response is achievable when an interracial layer ma-
terial is introduced whose constitutive response is identical to that of TIMETAL 21S (the
matrix) except that its flow property resembles that of a perfectly viscoplastie material.
This interface constituent response (line ab) is shown in Fig. 4 along with the associated
weakly bonded composite (macro) response (line ac). Clearly, this transverse stress-strain
response possesses qualitatively the three experimentally observed deformation regions,
see Majumdar and Newaz (1992), and, Lerch and Saltsman (1993). That is, an initial
elastic region that corresponds to the strongly bonded case (when the interface is closed),
a slightly nonlinear region that is associated with the opening of the interface, and finally
a highly nonlinear region associated with interface opening and matrix inelasticity. Note,
with such an idealization the interfacial yield stress now becomes the calibration param-
eter that will dictate the point at which the transverse composite response deviates from
the strongly bonded case.

In order to demonstrate the versatility of MAC and the influence of volume fraction
and fiber array packing (geometry) on the transverse tensile response, three fiber volume
fractions (i.e., 20, 35 and 50%), five fiber packing arrays, depicted in Fig. 5, and both
strong and weak interfacial conditions were examined. Additionally, a random packing
arrangement was analyzed for the strongly bonded, 35 percent volume fraction case. The
response curves illustrates the composite transverse response for fiber volume fractions

of 20, 35 and 50 percent are shown in Figs. 6, 7, and 8, respectively. Glearly, the
results indicate a significant influence of packing geometry on the transverse response
with this influence increasing dramatically at higher volume fractions, particularly in the
case of a strongly bonded system. Specifically, at a volume fraction of 20%, there is
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very Httle dii_erence between packing geometries whereas at a 50% volume fraction the
difference in each packing geometry is clearly distinguishable due to the increased fiber
interaction. The various trends in Figs. 6, 7 and 8 are consistent with those discussed
in the literature. For example, the rectangular packing arrangement with high R ratio
(ratio of horizontal to vertical distance between inclusion phases) exhibited the stiffest
tensile response, followed by the rectangular (R=0.74), square, hexagonal, and the square
diagonal giving the least stiff tensile response (see Table II for various literature references
). This array ordering is independent of bond strength as it is primarily associated with
the enhancement or reduction of a triaxial (i.e., hydrostatic) stress state in the matrix,
thus the enhancement or reduction of inelastic flow in the matrix. Also, in conformity
with the results of Brockenbrough et al. (1991) and Nakamura and Suresh (1993) a
random fiber array's tensile response will be slightly greater (given a sufficiently high fiber
volume content) than a hexagonal fiber arrangement. As illustrated in Fig. 7, at a 35%
fiber volume fraction the hexagonal, random and square diagonal arrays all correspond.
Finally, increasing the volume fraction increases the "stiffness" of the transverse tensile
response of a strongly bonded system, whereas it decreases the "stiffness" in a similarly
arranged yet weakly bonded system (since by increasing the volume fraction one is, in
essence, increasing the number of "holes" in the matrix).

4.2 Effect of Strain Rate

Now let us examine the influence of strain rate, fiber volume fraction, and packing

arrangement on the longitudinal and transverse tensile behavior given a strongly bonded
system. Figure 9 illustrates the predicted longitudinal stress-strain response for two vol-
ume fractions, i.e., 35 and 50%, and the five previous fiber array geometries, given the
two constant longitudinal total strain rates of 8.33x10 -4 and 8.33x10 -6 per second. As
expected, the longitudinal tensile behavior, at a given strain rate_ is independent of the
packing geometry. However, significant strain rate dependence is observed, even in the
longitudinal direction, due to the significant rate dependence of the matrix (TIMETAL
21S), see Fig. 10. The fact that the composite rate dependence is matrix driven is con-
firmed by the fact that the two order of magnitude increase in strain rate gives rise to
approximately a 12_ difference in stress or strain level for a 35% volume fraction whereas
for a 50% volume fraction only a 7% difference is observed. This longitudinal time de-
pendence is an important feature to remember and has largely been overlooked in the
literature due to the use of time independent plasticity and/or steady state creep consti-
tutive models. With MAC/GMC however, the use of sophisticated unified viscoplastic
constituent constitutive models is computationally affordable and straightforward.

Figure 11 and 12 show, respectively, the 35 and 50 percent volume fraction transverse
stress-strain tensile response, given the five different packing arrays shown in Fig. 5,
which are all subjected to two constant transverse total strain rates of 8.33x10 -4 and
8.33x10 -6 per second. Comparing Figs. 11 and 12, one observes that: 1) the packing
geometry, for a given applied strain rate, has an influence on the transverse response, 2)
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increasing the strain rate or the volume fraction results in a slight increase in the packing

geometry influence, and 3) the transverse composite rate dependence is greater than the
neat matrix rate dependence (see Fig. 10) and this composite rate dependence slightly
increases with an increase in volume fraction.

4.3 Creep Behavior

Another classic loading situation which accentuates the time dependence of the var-
ious constituents within a composite structure is that of creep. In Fig. 13 we illustrate
the influence of fiber volume fraction and packing geometry on the longitudinal stress-
strain and inelastic strain versus time response of SCS-6/TIMETAL 21S. Once again, as
expected, the longitudinal creep response is independent of fiber packing; however, note
that significant longitudinal primary creep behavior and no steady-state creep behavior
are observed. This apparent transient composite creep behavior, in reality, is a result of
the matrix stress being shed to the fiber and is entirely dependent on the matrix relax-
ation behavior. This load shedding mechanism is illustrated in Fig. 14, where the stress
versus time response of the fiber, composite, and matrix are shown. Note that increasing
the fiber volume fraction (e.g., from 35 to 50%) decreases the maximum stress state in
the matrix (i.e., from 345 to 276 MPa) and consequently the rate of matrix relaxation
(see Arnold et al. (1994a,b)). Consequently, the accumulation of the apparent longitu-
dinal creep strain of the composite is similarly decreased. Clearly, because of this load
shedding mechanism, in order to accurately predict longitudinal time dependent response
(i.e., strain rate dependence or "creep" behavior) the inelastic constitutive model for the
matrix must be capable of accurately predicting the matrix relaxation behavior. This
fact, along with the fact that the in situ stress state in the matrix is multiaxial and
nonproportional, make the use ofa GVIPS class ofunified viscoplastic model extremely
attractive , see Arnold et al. (1995).

The influence of fiber packing and bond serength on the transverse creep response
is now examined. Figure 15 depicts the transverse stress- strain response given the five
different fiber array geometries studies previously, whereas Fig. 16 shows the strongly
bonded, transverse creep strain 2 versus creep time response for the five architectures
given a constant applied stress of 138 MPa. Similarly, Fig. 17 shows the transverse creep
strain versus creep time response for a weakly bonded square and square diagonal fiber
array geometry. Evidently, transverse creep is significant in this composite system and
highly dependent upon the creep behavior of the matrix. Furthermore fiber packing and
bond strength play important roles, in that the square diagonal array is the least creep
resistant geometry (be it strongly or weakly bonded) whereas the square and rectangular
(with low 1%ratio) arrays are the most creep resistant. Note, the significant increase in

• the creep response (as well as the "softer" tensile response) in the presence of a weakly
bonded interface. For example, comparing Figs. 16 and 17, we see that the weakly
bonded system accumulates approximately the same amount of inelastic strain as the

2Creep strain is defined as the inelastic strain incurred during a period of constant load.
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strongly bonded system, but in approximately 1/36 th the time. Thus one can conclude
that a weakly bonded system produces significantly higher inelastic strain rates in the
matrix, due to the opening up of the fiber/matrix interfaces.

4.4 Hybrid Architecture

Although significant longitudinal specific strengths and stiffnesses are achievable in
a SCS-6 reinforced TMC compared to monolithic superalloys, typically the transverse
behavior is significantly less than that of the neat matrix (or superalloy) behavior due
to the presence of the weak fiber/matrix interface. This disadvantage is particularly
important in rotating type applications (e.g., TMC ring or impeller components) where
high tensile radial stresses are present. MAC/GMC is ideally suited for analyzing
multi-phased composites with arbitrary architecture, consequently here we will examine
the influence of a hybrid (both in fiber size and bond strength) architecture on the
transverse inelastic response in an attempt to mitigate this disadvantage. The proposed
architecture examined consisted of a TIMETAL 21S matrix reinforced with a 35% fiber

volume fraction (V_a) of the larger (weakly bonded) SCS-6 fibers arranged in a square
array, supplemented with a lower volume fraction (i.e., Vm = 2.8, 8.75, and 17.5%) of
smaller (strongly bonded) fibers, for example Al203, W, or Mo, arranged in a rectangular
array, see Fig. 18. The resulting transverse stress-strain and creep strain versus creep
time responses of the hybrid composite are given in Figs. 19 and 20 respectively. Clearly,
both the transverse tensile and creep behavior are improved with the addition of a small
fraction of strongly bonded fibers, with respect to the two-phased, weakly bonded, SCS-
6/TIMETAL 21S system alone. Examining the results of the constant strain rate (_ =
8.33x10 -4 per second) tensile tests shown in Fig. 19, it is apparent that all three hybrid
architectures analyzed still give an overall "softer" response compared to that of the
monolithic matrix. However, at higher volume fractions of the smaller (strongly bonded)
fibers, the initial tensile response of the hybrid composite remains "stiffer" than that
of the matrix only -- for over double the stress range of the two-phased system's initial
response. This indicates that the presence of the smaller (strongly bonded) fibers not only
adds to the transverse resistance but also reduces the extent to which the larger (weakly

bonded) fiber/matrix interface opens. The creep response at an applied stress of 69 MPa,
see Fig. 20, is similarly influenced by the presence of a small volume fraction (i.e., VF2 =
17.5%) of smaller strongly bonded fibers; the creep resistance is increased three fold over
that of the two-phased composite system response. Consequently, based on these results
one might expect that significant improvements in the burst strength and fatigue life of
TMC rings and impellers may be achieved through the use of such hybrid architectures.
Note that depending upon the density of the smaller fibers, the overall weight of the
system may or may not be appreciably increased. Also, the longitudinal strength of such
systems may be adversely influenced if premature failure in the longitudinal directions of
the smaller diameter fibers is observed. An experimental investigation into the influence
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offiberarchitectureincludingtheabovehybridmicrostructure,iscurrentlyinprogress

fora SCS-6/Ti-6-4TMC system.

4.5 Fiber Shape

• Finally, it has been documented in the literature that fiber shape plays an important
role in the deformation response of composites (e.g., see Adams and Donner, 1967a, or
Brockenbrough et al., 1991). Here we examine three fiber shapes to verify the qualitative
predictive behavior of MAC/GMC and illustrate the influence of fiber shape on the
inelastic response of TMCs. The shapes studied are a square, circular and cross shaped
fiber cross sections. The fiber/matrix interface is taken to be strongly bonded and the
three RVEs analyzed are depicted in Fig. 21. The stress-strain responses resulting from
a transverse tensile test performed at a constant strain rate of 8.33x10 -4 per second are
shown in Fig. 22; whereas the creep strain versus creep time responses resulting from an
applied transverse stress of 138 MPa are shown in Fig. 23. Note, in all cases the fiber
volume ratio is 35 percent and the fiber packing arrangement is square. The four tensile
responses in Fig. 22 indicate that fiber shape has only a minor influence on the apparent
elastic stiffness, whereas the inelastic (nonlinear) portion of the tensile response is more
significantly influenced. The square fiber provides the highest triaxial (hydrostatic) state
of stress within the matrix and consequently the "stiffest" (or more elastic) response,
followed by the cross-shaped fiber (i.e., d=0.05 and 0.2) and then the circular shaped
fiber. As one might expect, this ordering is transferred to the transverse creep response
as well. The circular shaped fiber provides the least creep resistant architecture and the
square fiber the most creep resistance; a two-fold increase in creep resistance relative to
the circular cross section. Note that the secondary creep behavior is more dramatically

influenced by fiber shape than the primary creep behavior. Also, it is important to
observe that although the applied creep stress is well within the linear portion of the
stress-strain response (i.e., the apparent elastic zone, see Fig. 22) significant transverse
creep behavior is predicted.

5 SUMMARY/CONCLUSIONS

In summary, this three part paper has focused on the influence of fiber architecture
(i.e., shape and distribution) relative to the elastic and inelastic response of metal matrix
composites. The first part provided a comprehensive annotative review of the literature
from a historical perspective, dealing with the effects of fiber shape and distribution on
the response of continuously reinforced advanced polymeric matrix and metal matrix
composites. Previous investigations dealing with both continuously and discontinuously
reinforced composites were included. The second part outlined a recently developed ana-
lytical micromechanics analysis code (MAC) that is particularly well suited for studying
the influence of these effects on the response of metal matrix composites. In particular,

MAC/GMC is sufficiently general to predict the inelastic response of unidirectional
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multi-phased composites reinforced by either continuous or discontinuous fibers with
differentinclusionshapes and spatial arrangements in the presence of either perfect or
imperfectinterfacesand/or interfaciallayers.

Finally, the third part provided qualitative results generated using (MAC) for a rep-
resentative titanium matrix composite system, i.e., SCS-6/TIMETAL 21S. Results were
presented that correctly demonstrated (i.e., consistent with the literature) the relative ef-
fects of fiber arrangement and shape on the longitudinal and transverse stress-strain and
creep response, in the presence of either strong or weak fiber/matrix interfacial bonds.
The fiber arrangements included square, square diagonal, hexagonal and rectangular pe-
riodic arrays, as well as a random array. The fiber shapes included circular, square
and cross-shaped cross sections. The effect of fiber volume fraction on the observed
stress-strain response was included, as was the thus-far poorly documented strain rate
sensitivity effect. In addition to the well documented features of architecture dependent
response of continuously reinforced two-phase MMCs, new results involving continuous
multi-phased internal architectures were presented. Specifically, the stress-strain and
creep response of composites with different sized fibers having different internal arrange-
ments and bond strengths was investigated with the aim of determining the feasibility
of using such an approach to enhance the transverse toughness and creep resistance of
TMC rings and impellers.

We now list the major conclusions drawn from this study, relative to continuous-
reinforced metal matrix composites:

• MAC/GMC results are consistent with results documented in the literature re-
garding the relative effects of fiber arrangement and shape on the longitudinal and
transverse inelastic, time dependent, response, in the presence of either strong or
weak bond strengths.

• Transverse inelastic behavior is greatly influenced by fiber packing, volume fraction,
bond strength and fiber shape.

• Given a rate-sensitive constituent material, the composite behavior will possess

significant rate sensitivity, both longitudinally and transverse to the fiber direction;
where the extent of this sensitivity is dependent upon both the fiber volume fraction
and constituent property mismatch.

• Transverse toughness and creep resistance can be enhanced (relative to the standard
two-phased, weakly bonded, systems) using the concept of hybrid (multiphased)
architectures. The specific example hybrid architecture investigated here consisted
of two different fiber diameters and bond strengths (one weak and one strong).

• The availability of MAC now provides the composites community with a compre-
hensive, computationally e_cient, user-friendly, micromechanics analysis tool that:
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1) admits physically based viscoplastic deformation and life models for each con-
stituent of a multiphased material and 2) can analyze continuous or discontinuous
multi-phased composites.

Future work will address: 1) the influence of continuous fiber architecture in the
' presence o£ residual stresses arising from processing; 2) experimentally verify the above-

documented impact of fiber architecture on the inelastic behavior of an SCS-6/Ti-6-4
composite system (particularly in the case of the proposed hybrid architecture); 3) link
optimization algorithms with GMC so as to determine the optimum architecture for a
given loading history; 4) examine the influence of fiber architecture on the deformation
and failure of structural components such as MMC rings, and 5) investigate the influence
of discontinuous fiber architectures on inelastic behavior.
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Table I. Summaryof references providingexplicitcomparisonof the elastic response
of continuouslyreinforced compositeswith different fiberarchitectures.

Reference Fiber shape and array geometry Elasticmoduli Fiber/matrix

Hashinand Rosen (1964) circular fibers in a hexagonal array, and GI2 versus v! GI/Ep
circular fibers of unequal cross sections in
a random array (variational elasticity
treatment)

Hashin (1965) statistically homogeneous distribution of GI2, G2_ and K23 (upper and N/A
fibers with arbitrary cross-sections lower bounds)
(variational elasticity treatment)

Foye (1966a,b) circular fibers in square and hexagonal vl2, v23,E22 and GIz versus vf GI/Ep
arrays, elliptical fibers in a hexagonal
array, diamond and rectangular fibers in a
diamond array (finite-element analysis of
aunitcell)

Adams and Donner (1967a) circular, elliptical and square fibers with G12 versus filament spacing, B/Ep, G1/Ep,Gr/Ep oo
equal spacing in the transverse plane Gt2 at selected vf for different "_
(finite-difference analysis of a unitcell) G!/G,,, ratios

Pickett (1968) circular fibers in rectangular and Cii componentsfor selected vf G1/Ep
hexagonal arrays (elasticity analysis of a
unit cell)

Adams and Tsai (1969) circular fibers in periodic and random E22 versusv! GI/Ep
square and hexagonal arrays (finite-
dement analysisof a unit cell)

Ashtonetal. (1969) circular fibers in square and hexagonal E22, GI2 versus v! (rectangular GI/Ep,B/Ep
arrays, rectangular fibers in a diamond fibers with different aspect
array (finite-difference and finite-element ratios),E22 vs vl (circular fibers
analysis of a unit cell) in square andhexagonal arrays)

Hashin (1972) an infinite array of composite cylinders of Gi2 versus vI, E22versus vf GI/Ep
continuously varying sizes that completely
fill the composite space (variational and
exact elasticity analysis of a fiber/matrix
compositecylinder)



TableI/. Summaryof referencesprovidingexplicitcomparisonoftheelastic/inelastic
responseof continuouslyreinforcedcompositeswithdifferentfiberarchitectures.

Reference Fiber shape and array geometry Elasticmoduli Inelastic response Fiber/matrix

Adams(1970) circular fibers in square and None given o22-e22(elastoplastie ) BIAI
rectangular arrays

Crossman et al. (1974) circular fibers in square, hexagonal None given _2 - 022 (steady-state creep) B/AI
and diamond arrays

Crossman and Karlak (1976) circular fibers in square, hexagonal None given _2 - 022 (steady-state creep) BIAI
and diamond arrays _t2- ol2 (steady-statecreep)

Karlak and Crossman (1976) circular fibers in square, square- Ell, E22, (712,vf2, v23for o]'1 for selected vf, o r - 0 BIAI
diagonal and hexagonal arrays selected vl, Exxversus 0

Wisnom(1990) circular fibers in rectangular and E22, v_ o_ (weak interface) SiC/AI
diamond arrays

Nimmer et al. (1991) circular fibers in square and None given o22- €22 (elastoplastie, weak SiCtTi o_
rectangular arrays interface) "_

Brockenbrough et al. (1991) circular andsquare fibers in square, El1, E22, G23,v12 olt - _tl (elastoplastie) B/AI
square-diagonal, triangular and 022- _2 (elastoplastie)
random arrays; hexagonal fibers in 023-_23 (elastoplastic)
a triangular array

Nakamura andSuresh (1993) circular fibers in square, square- Ezl, E22, G23, _2 oH -eH (elastoplastie) B/AI
diagonal, hexagonal and random 0_-_2 (elastoplastic)
arrays e_ - AT (thermoplastic)

Bohm et at. (1993) circular fibers in square, square- Ell, E22, VI2, OCll,0_22 O{I, O{2 (initial yield stress) B/AI
diagonal, diamond and quasi- oll - ell (elastoplastic)
random arrays o22- c_2 (elastoplastie)

Mueiler(1994) circular fibers in square and EH, E22, Gi2, G23, v12, OI2-el2 (elastoplastic) BIA1
hexagonal arrays, square fibers in a v23, at1, 0_2 o22- _2 (elastoplastie)
square array o23- _23 (elastoplastie)

Note: finite-element analysis of a unit cell model used in all of the above references.



Table IR. Summaryof referencesproviding explicit comparisonof the elastic/inelastic
response of discontinuouslyreinforced composites with differentfiber architectures.

Reference Fibershapeandarraygeometry Elasticmoduli Inelasticresponse Fiber/matrix

Brownand Clarke (1975) sphericaland disk-like inclusionsin None given Ore,e,n
macroscopicaUyuniform arrays

Christman et al. (1989) cylindrical and spherical inclusions None given oll - ell (elastoplastic) AI-SiC
in hexagonal, unstaggered arrays,
rectangular inclusions in clustered
arrays

Tvergaard (1990) cylindrical inclusions in hexagonal, None given o'11- ctl (elastoplastic) AI-SiC
staggered arrays

Povirket al. (1990) cylindrical inclusions in hexagonal, None given Residual stresses for several AI-SiC
unstaggered arrays fiber and cell aspect ratios,

and fiber concentrations
(thermoplastic)

PapazianandAdler(1990) as.fabricated whisker and Ell O11- ell (elastoplastic) AI-SiC to°
particulate-reinforced composites

Levy and Papazian (1990) cylindrical inclusions in square, Ell, E_., vl2, v21 oli - _11(elastoplastic) AI-SiC
unstaggered and staggered arrays

Dragone andNix (1990) cylindrical inclusions in cylindrical, None given en - time (creep), kn - fiber AI-SiC
unstaggered arrays, rectangular distance, aspect ratio, overlap
inclusions in clustered arrays (creep)

Bao et al. (1991) cylindrical, spherical and None given o_r__'- aspect ratio, On - e:u
ellipsoidal inclusions in hexagonal, (elastoplastie)
unstaggered arrays, needle-like and
disk-like inclusions in packet-like
morphology

Povirk et al. (1992) cylindrical, conical and ellipsoidal Nonegiven Oil --_lt (elastoplastic) AI-SiC
inclusions in hexagonal,
unstaggered arrays

Note: finite.element analysis of a unit cell modelused in all of the above references.



Table III (cont'd). Summaryof references providingexplicit comparisonof the elastic/inelastic
response of discontinuouslyreinforced compositeswith differentfiber architectures.

Reference Fiber shape and array geometry Elastic moduli Inelastic response Fiber/matrix

Yang et al. (1991) as-fabricated composites reinforced Ell versus v_ Oit - Ctl (elastoplastie) A1-SiC
with SiC particulates and
randomly-oriented platelets

Lu et al. (1991) circular fibers in cubic and None given Stress intensity factor versus
hexagonal arrays crack length for radial cracks

at the fiber/matrix interface

Siegmund et al. (1992) cylindrical inclusions in hexagonal, None given _!1- temperature (elastoplastic) AI-AI203SiO2
staggered and unstaggered arrays

McHugh et al. (1993a-d) hexagonal inclusions in periodic None given oll - I_H (crystallographic.
arraysof variousmorphologies viscoplastic theory)

Abel et al. (1993) cylindrical inclusions in hexagonal, None given Oil -- Ell (elastoplastic) AI-AI203SiO2
staggered andunstaggeredarrays 022- _2 (elastoplastie)

(interfacial debonding and to
deformation-induced damage)

Weissenbek and Rammerstorfer (1993) cylindrical inclusions in hexagonal, None given ell- temperature (elastoplastie) AI-AI203
staggered and unstaggered arrays e22- temperature (elastoplastic)

all - etl (elastoplastic with
deformation-induced damage)

Weissenbek et al. (1993) cubical, cylindrical and spherical None given oll - Ell (elastoplastie) AI-SiC
inclusions in simple, face-center ell-temperature(elastoplastic)
body-center cubic arrays, _2 - temperature (elastoplastic)
cylindrical inclusions in hexagonal,
staggered and unstaggered arrays

Shenet al. (1994) cylindrical, octagonal, conical and E versus vf None given
spherical inclusions in hexagonal,
unstaggered arrays, different-sized
square inclusions in square arrays

Note: finite-elementanalysis of a unit cell modelused in all of the above references.
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Figure 1: Comparison of the computational speed and accuracy o£the generalized method
of cells (GMC) to the finite element unit cell approach.
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Figure 3: Qualitative tensile behavior of 35% volume fraction TMC system and its con-
stituents given a total strain rate of 8.33x10 -4/sec.
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Figure 4: Qualitative transverse tensile behavior of 35% volume fraction TMC system
with different interracial consitutive models (i.e., purely elastic and elasto-perfectly-

viscoplastic) to simulate a weak fiber/matrix bond.
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Figure 5: The representative volume elements of the five fiber packing arrays examined,
i.e. square, triangular (or hexagonal), rectangular with R= 0.74 and 1.34, and square
diagonal.
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Figure 11: Influence of strain rate and fiber packing geometry on the transverse tensile
response of a TMC system given a 35 percent fiber volume fraction.
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Figure 12: Influence of strain rate and fiber packing geometry on the transverse tensile
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Figure 15: The transverse stress-strain response of a 35 percent volume fraction TMC
• system illustrating the influence of fiber packing geometry and bond strength on the

transverse creep behavior, see Figs. 16 and 17.
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packing geometries.
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• Figure 18: Schematic of a specific hybrid architecture involving large (weakly bonded)
and small (strongly bonded) diameter fibers.
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Figure 19: Influence of smaller diameter fiber volume fraction, for the specific hybrid
architecture of Fig. 18, on the transverse composite tensile response.
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Figure 20: Influence of smaller diameter fiber volume fraction, for the specific hybrid
architeture of Fig. 18, on the transverse composite creep response.
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Figure 21: Schematic of a square, circular, and shallow and deep cross fiber cross section
representative volume elements.
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• Figure 22: The stress versus strain response of a strongly bonded TMC system, illustrat-
ing the influence of fiber shape on the transverse tensile behavior.
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Figure 23: The transverse creep strain versus creep time response of a strongly bonded
TMC system, illustrating the influence of fiber shape on the transverse creep behavior.
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shape and distribution on the response of advancedpolymeric matrix and metal matrix composites. Previous investigations dealing with both
continuously and discontinuously reinforced composites are included. A summary of the state-of-the-art will assist in deeming new directions in
this quickly reviving area of research. The second part outlines a recently developed analytical micromechanics model that is particularly well
suited for studying the influence of these effects on the response of metal matrix composites. This micromechanies model, referred to as the
generalized method of ceUs (GMC), is capable of prcdicting the overall, inelastic behavior of unidirectional, multi-phased composites given the
propexties of the constituents. In particular, the modal is sufficiently general to predict the response of unidirectional composites reinforced by
either continuous or discontinuous fibers with different inclusion shapes and spatial an-angements in the presence of either perfect or imperfect
interfaces and/or interfacial layers. Recent developments regarding this promising model, as well as dircaions for future enhancements of the
model's predictive capability, are included. Finally, the third part provides qualitative resuks generated using GMC for a representative titanium
matrix composite system, SCS--6/'I'IMETAL 21S. Results are presented that correctly demonstrate the relative effects of fiber an'angement and
shape on the longitudinal and transverse strcss-strain and creep response, with both strong and weak fiber/matrix interracial bonds. The fiber
arrangements include square, square diagonal, hexagonal and rectangularperiodic arrays, as well as a random arxay.The fiber shapes include
drcuiar, square and cross-shaped cross sections. The effect of fibcr volume fraction on the observed stress-strain response is also discussed, as is
the thus-far poorly documented strain rate sensitivity effect. In addition to the well documented features of architecture dependent response of
continuously reinforced two-phase MMCs, new results involving continuous multi-phase internal architectures azepresented. Specifically, stress-
strain and creep response of composites with different size fibers having different imemal arrangements and bond strengths am investigated with
the aim of determining the feasibility of using this approach to enhance the transverse toughness and creep resistance of TMCs.
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